Dassault Systèmes

Read articles by industry leading experts at Tata Technoloiges as they present information about Dassault Systemes products, training, knowledge expertise and more. Sign-up below to receive updates on posts by email.

Today’s topic will focus a little on the licensing side of CATIA – namely CAT3DX and the theory of what it is here for.

Several years ago, Dassault changed the way they were packaging CATIA V5 by introducing PLM Express as a way to buy it; my colleague Jason Johnson explained this in a previous post. As he had mentioned, this was referred to as CATIA TEAM PLM and was really designed to allow for connecting current CATIA V5 users of their new PLM offering, which was ENOVIA SmarTeam.  He also wrote briefly about the configurations and trigrams that make up the software.  The easiest way to think about a trigram per se is to know that a group of trigrams make up a configuration, and trigrams by themselves give you access to particular workbenches – or in some cases only add toolbars to existing workbenches.

Why does this matter? Because there is a new sheriff in town called 3DEXPERIENCE. Much more than a PLM system, the 3DEXPERIENCE platform suite of tools will assist the user in management of their daily work, projects, processes, BOMs, documents, CAD, etc.  While an old CAC (CAT) license – which was the base configuration for PLM Express – would give you access to SmarTeam by bundling in TDM and TEM trigrams, the new CAT3Dx will now give you all of that, as well as access to the ENOVIA 3DEXPERIENCE Platform, by giving you the PCS and CNV trigrams as well. These are the minimum trigrams needed to connect to the platform (the price for admission).

The Dassault idea is still the same – help CATIA v5 users move away from file-based, directory-based storage (which has always presented its own challenges) and help companies regain control of their data via the new platform. The only caveat to this is that you would install ENOVIA to manage your data, which is not as simple as throwing in a set of discs like SmarTeam was. ENOVIA requires the setting up of a database using SQL or Oracle, and then configuration of the various pieces (web server, authentication, java virtual machine, etc.).  Once this has been configured, the base PCS, CNV combination gives you the ability to vault your data and set up workspaces for where and how it will be stored, as well as do some level of change management on it. (set up Change Requests and Routes for how your data will be routed) to get it through its life cycle to release.

Creation Menu

 

The ENOVIA applications that come with the PCS, CNV combination are Classify & Reuse, Collaboration & Approvals, Collaborative Lifecycle, Design IP Classification, Exchanges Management, My Collections, My Issues, My Route Tasks, and X-CAD Design. These are plenty enough to help your team begin to get to a single source of truth – meaning, never having to guess what state the latest data is in.

ENOVIA Apps

You also have access applications for business intelligence information. This includes access to the latest technology of Dashboards.  Dashboards are ways of viewing data configured to your liking.  Not at all unlike the old igoogle portal which allowed you to customize your view of news, etc. In 2012 Dassault acquired Netvibes.

netvibes

Information Intelligence

[…]

This is a second look at the hidden intelligence of CATIA V5. Our topic today will focus on the creation and use of design tables. As I talked about in my last blog post, parameters and formulas can be used to drive your design from the specification tree based on your design intent. We will continue on using the rectangular tubing part and build several variations of that tubing that can be driven from a spreadsheet.

Design Table Icon

Most of the work has been already done, and although it is not necessary to have pre-defined parameters and formulas existing, the process is faster. We will begin by again looking at the Knowledge toolbar, this time focusing on the Design Table icon.

When the command is selected, a dialog appears asking for the name of the design table and also gives you a choice on whether or not you want to use a pre existing file or create one from the current parameter values.  The differences being whether or not you have an existing spreadsheet filled out already with all the tabulated values of what changes in each iteration of the design.

Design Table Dialog

 

In our case, to show the functionality we will choose the create with current parameter values option. Once that is decided, you choose which parameters you want to be driven by the spreadsheet.  In our case, we had some already created, so we changed the filter to User parameters, chose the values that were NOT driven by formulas (INSIDE and OUTSIDE RADII) and moved them to the inserted side by highlighting and clicking the arrow.

Parameters to Insert

At this point, we have defined that we want a spreadsheet to use columns for Height, Width, and Wall Thickness based on the current values in the model as it is at this moment. When we click OK on the dialog, it will ask us where we want to save the spreadsheet. I suggest that you do this in a place where anyone who uses the model can has at least read access to (i.e. a network drive).  Note that I can also change the type of file to a .txt if I do not have access to Excel® or any other software that can edit .xls files.

Read Access Directory

 

Once this has been defined, your design table is created, linked to your 3D model, and ready to be edited to include your alternate sizes. This is confirmed by the next dialog. To add in the other sizes, simply click on the Edit table… button and your editor (Excel or Notepad) should launch and simply fill in rows with your values.

Linked and ready to edit

Once you have edited and saved the values, you can close that software and CATIA will update based on your values.

Excel Modifications

 

CATIA Updated

Now you would just pick the value set you want and click OK for the change to appear on the screen.

File Updated

At any time, you can always go to make the changes by finding the Design Table under the Relations section of the specification tree and double-clicking on it.

Design Table under Relations

As you can see, it’s pretty easy to create a design table and drive your parametric file with multiple values. The world of CATIA V5 is all about re-use of data and capturing business intelligence we already know exists in all companies.  How can we help you? Tata Technologies has helped many companies time and again.

Stay tuned for Part 3!

 

 

 

 

 

 

I mentioned the process automation concept of ISight in a previous simulation automation blog. ISight is an open source code simulation automation and parametric optimization tool to create workflows that automate the repetitive process of model update and job submission with certain objectives associated with it. The objective could be achievement of an optimal design through any of the available techniques in ISight: Design of experiments, optimization, Monte Carlo simulation or Six Sigma. In this blog post, I will be discussing various value added algorithms in DOE technique; I will discuss other techniques in future blogs.

Why design of experiments

Real life engineering models are associated with multiple design variables and with multiple responses. There are two ways to evaluate the effect of change in design variable on response: Vary one at a time (VOAT) approach or Design of experiments (DOE) approach. The VOAT approach is not viable because:

  • This approach ignores interactions among design variables, averaged and non-linear effects.
  • In models associated with large FE entities, each iteration is very expensive. VOAT does not offer the option of creating high fidelity models with a manageable number of iterations.

With the DOE approach, user can study the design space efficiently, can manage multi dimension design space and can select design points intelligently vs. manual guessing. The objective of any DOE technique is to generate an experimental matrix using formal proven methods. The matrix explores design space and each technique creates a design matrix differently. There are multiple techniques which will be discussed shortly and they are classified into two broad configurations:

  • Configuration 1: User defines the number of levels and their values for each design variable. The chosen technique and number of variables determines number of experiments.
  • Configuration 2: User defines the number of experiments and design variables range.

Box-Behnken Technique

This is a three level factorial design consisting of orthogonal blocks that excludes extreme points. Box-Behnken designs are typically used to estimate the coefficients of a second-degree polynomial. The designs either meet, or approximately meet, the criterion of rotatability. Since Box-Behnken designs do not include any extreme (corner) point, these designs are particularly useful in cases where the corner points are either numerically unstable or infeasible. Box-Behnken designs are available only for three to twenty-one factors.untitled

Central Composite Design Technique […]

If you are in the business of designing and engineering product, then you have PLM. This is a statement of fact. The question then becomes: what is the technology underpinning the PLM process that is used to control your designs?

Because of the way that technology changes and matures, most organizations have a collection of software and processes that support their PLM processes. This can be called the Point Solution approach. Consider a hypothetical setup below:

The advantage of this approach is that point solutions can be individually optimized for a given process – so, in the example above, the change management system can be set up to exactly mirror the internal engineering change process.

However, this landscape also has numerous disadvantages:

  1. Data often has to be transferred between different solutions (e.. what is the precise CAD model tied to a specific engineering change?). These integrations are difficult to set up and maintain – sometimes to the point of being manual tasks.
  2. The organization has to deal with multiple vendors.
  3. Multiple PLM systems working together require significant internal support resource from an IT department.
  4. Training and onboarding of new staff is complicated

The alternative to this approach is a PLM Platform. Here, one technology solution includes all necessary PLM functionalities. The scenario is illustrated below:

It is clear that the PLM Platform does away with many of the disadvantages of the Point Solution; there is only one vendor to deal with, integrations are seamless, training is simplified, and support should be easier.

However, the PLM Platform may not provide the best solution for a given function when compared to the corresponding point solution. For example, a dedicated project management software may do a better job at Program Management than the functionality in the PLM Platform; this may require organizational compromise. You are also, to some extent, betting on a single technology vendor and hoping that they remain an industry leader.

Some of the major PLM solution vendors have placed such bets on the platform strategy. For example, Siemens PLM have positioned Teamcenter as a complete platform solution covering all aspects of the PLM process. (refer to my earlier blog post What is Teamcenter? or, Teamcenter Explained). All of the PLM processes that organizations need can be supported by Teamcenter.

Dassault Systèmes have pursued a similar approach with the launch of their 3DEXPERIENCE platform, which also contains all of the functions required for PLM. In addition, both are actively integrating additional functionality with every new release.

So what is your strategy – Point or Platform? This question deserves serious consideration when considering PLM processes in your organization.

For many years, finite element modeling has been the job of a specialist; the tools used to perform even simple finite element analysis have been complex enough to require a subject matter expert. This is primarily due to the complex, difficult to understand graphical user interfaces of these products. The job is made further difficult to perform due to the requirement of advanced engineering subject knowledge by the analyst.

Can a mechanical designer who uses CAD tools to create engineering drawings be trained to perform engineering simulations?

In today’s product availability scenario, the answer is “yes.”

A CAD designer using CATIA can create and execute simple finite element models within the CATIA environment by using CATIA workbenches that have been developed for simulations. This makes it intuitive and easier for designers to ensure that their parts meet their design requirements.

untitled

How the simulation methodology gets simplified using designer level tools

  • No need of an expert level analyst tool to perform simple finite element simulation.
  • No need of manual data transfer between design and analysis departments.
  • No need of geometry clean up tools to fix data translation errors.

There are obvious benefits to adopting this simplified approach that integrates the design and analysis environments. The designer can predict design problem early in design process; subsequently the designer can check various alternatives of design in less time. This is primarily due to the tight integration of designer level tools with knowledge based engineering that allows the designer to deliver better product in less time.

Part Level Simulation

From a geometrical perspective, the simulation model can be generated at part level to begin with. The native integration within CATIA allows users to perform stress, displacement, and vibration analysis at any time in the design process, allowing more accurate sizing of parts and fewer design iterations. Individual parts consisting of solid, surface, and wireframe geometries can be analyzed under a variety of loading conditions. The analysis specifications, such as loads and restraints, are associative, with the design allowing users to perform analyses quickly and easily. These specifications are then automatically incorporated into the underlying finite element model, meaning that users do not have to work directly with the finite element model. “Virtual parts” allow items like forces, moments, and restraints to be easily modeled without having to have a detailed geometric representation.

Standard reports can be automatically generated in HTML format, providing clear and detailed information about the results of the analysis, including images associated with the computations. These reports can be used to document the analyses that have been performed and to communicate the results of the analysis to other stakeholders in the organization. CATIA V5 Analysis users benefit naturally from the overall PLM solution provided by Dassault Systèmes, including ENOVIA V5 for data and product lifecycle management. CATIA V5 Analysis users can store, manage, and version all the data associated with their product’s simulation and share the information within the extended enterprise. This unique capability allows collaboration and provides access to advanced PLM practices such as concurrent engineering and change management.

untitled

     Assembly level simulation

 If the concept of virtual parts does not hold good anymore and the complexities of various parts interacting with each other make assembly level simulation mandatory, it is possible to create analysis models for assemblies as well. The analysis of assemblies, including an accurate representation of the way the parts interact and are connected, allows for more realistic and accurate simulation. The designer does not have to make simplifying assumptions about the loading and restraints acting on an individual part. Instead the part can be analyzed within the environment that it operates with the loading automatically determined based on the way the part is connected to and interacts with surrounding parts.

The various types of connections that can be modeled include bolted connections, welded connections, pressure fitting connections, and many more. To make the job further easier for the designer, these connections can be defined using assembly level constraints that already exist in the CAT Product model. Once the design changes, the associated assembly constraints as well as corresponding FEA connections get updated, thereby creating an updated FEA model that is ready for analysis.

         Concurrent engineering made easier 

The “assembly of analysis” capability enables concurrent engineering. For example, the various parts in an assembly can be modeled and meshed separately by different users. They can either use the CATIA V5 meshing tools or import orphan meshes (meshes that don’t have any geometry associated with them) developed outside of CATIA Analysis using a variety of different modeling tools. The user responsible for analyzing the assembly can consolidate the different meshes, connect the parts, apply the loading specifications, and run the simulation. This can significantly reduce the turnaround time when analyzing large assemblies, particularly since some of the parts may have already been analyzed and therefore, the analysis models would already be available.

untitled

Extended solver capabilities

The basic level FEA solver present in the CATIA designer workbench is called the “Elfini” solver and can model only simpler physical problems such as linear materials, small deformations, small rotations and bonded contacts; real life problems can be much more complex and may necessitate the need of an advanced solver. To address such scenarios it is possible to include the well known non-linear solver Abaqus into the CATIA designer environment; it can model the effects of geometric nonlinearity, such as large displacements, and allows nonlinear materials to be included, such as the yielding of metals and nonlinear elastic materials like rubber. It also offers more advanced contact capabilities including the ability to model large relative sliding of surfaces in contact.

The Abaqus capability enables the effect of multiple steps to be analyzed, where the loading, restraints, contact conditions, etc., vary from one step to the next. This powerful technique allows complex loading sequences to be modeled. For example, a pressure vessel might be subjected to an initial bolt tightening step, followed by internal pressurization, and conclude with thermal loading.

untitled

 

CATIA has many naming conventions and packaging options. In this post, we’ll be looking specifically at CATIA V5, with future posts examining CATIA V6 and 3DEXPERIENCE.

Version 5 began back in the late 90s as a complete re-write of the previous version. As development progressed, new releases were produced. A release indicates enhanced or new functionality over prior releases – however, still on the same version. A collection of bug fixes would be referred to s Service Pack, and specific bug fixes are referred to as a Hot Fix. Putting it all together we would see something like:

V5 R19 SP 9 HF 108

This would translate to:
Version CATIA 5, release 19, service pack 9, hot fix 108

Why is this important? Because many OEMs require their suppliers to deliver designs that specifically match their own.

Classic vs. PLM Express

When looking for a seat of CATIA, you would be looking for what Dassault calls a configuration. Configurations are commonly referred to by their trigram (a character letter acronym) that is specific to the type of design required. For instance, a mechanical designer would be interested in either an “MD1” or “MD2” – “Mechanical Design 1” or “Mechanical Design 2,” respectively – depending on level of complexity. We call these configurations Classic.

Later, to support their data management solution, SmarTeam, Dassault came up with new bundles called “CATIA PLM Express.” These bundles included licenses for SmarTeam, encouraging use by lowering the cost of entry. This also the first time we see the idea of roles. Rather than bundling functionality by the type of design, in CATIA PLM Express, the bundles are made more intuitive by considering the role of the designer. You could get these bundles, or modules, specific to Manufacturing Engineers, or Layout Engineers. The idea is to gather the modules required by the desired outcome (lathe machined parts, structural steel frames), rather than the methodology (mechanical design). You can build your own PLM Express here.

cat-1074657_1280There are a few additional terms to define when working with PLM Express. It all starts with the bundle called “CATIA TEAM PLM,” or in trigram speak “CAT,” which includes most of the basic design tools and some data management licenses. This is the base configuration upon which everything else is built.

The next level of bundles are called Enablers. Enablers form the starting point of the role-based package. A designer that needs to produce structural steel frames would start their selection in the “Layout Engineer” group of enablers, and would select the one named “CATIA Structure & Steelwork Layout,” or “SSE.” A tooling engineer would look at the group “Mechanical Product Engineer,” and the enabler of choice would be “CATIA Jigs & Tooling Creation,” or “JTE.” In the tooling example, the common way of referring to the package is “CAT+JTE.”

If enablers start the specialization bundles, the next level called Extensions round out. These bundles are very specific to a role or outcome. Case in point is “CATIA Composites Design,” or “CPX.” Another example would be “CATIA Electrical Cable Layout,” or “ECX” found in the “Layout Engineer” grouping, and could be added to the enabler “CATIA Layout & Annotations,” or “LOE.” That would create the final package of “CAT+LOE+ECX.”

A special note: in order to get access to an extension bundle, an enabler bundle must accompany it. In turn, to access an enabler, you must first start with CAT. Think of them as levels of a house: CAT, the base configuration, would be the first floor. The second floor consists of enablers, and the third floor are enablers. You can’t get to the third floor without the second. You can have any combination of enablers and extensions, regardless of the role grouping. So our tooling designer (CAT+JTE), may, for some reason, need access to the Electrical Cable Layout extension (ECX), found in the “Layout Engineer” grouping.

One final note, and this is a biggie.

When an OEM specifies a version level, say V5 R22 SP5 HF 16, they may also prescribe a classic configuration like MD2. This is not gospel. You may use a PLM Express bundle instead; both use the same file formats. They are both V5, and are interchangeable.

This can be extremely confusing, especially for new people just entering the CATIA world, and all these trigrams and bundles can be daunting. Our team can help you determine what you need and put together the bundle that makes the most sense for your situation. Just let us know how we can be of service.

untitled

Composites always had a well-defined place in the aerospace industry because of their properties: lightweight to make overall design lighter and toughness to make overall design bear the aero structural loads. At present, from aircraft fairing to train noses, boat hulls and wind turbines, composites offer dramatic opportunities to meet increasing cost-driven market requirements and environmental concerns. However, modeling of composites in a seamless collaborative environment has always been a challenge. This is because of multiple aspects of composites modeling such as design, simulation, and manufacturing that made it quite a tough task on a single platform.

CATIA composites workbench now offers a solution to address various aspects of composites modeling in a unified manner. The objective of this blog post is to provide information on composites workbench capabilities with respect to design, simulation, and manufacturability of composites.

DESIGN IN ANALYSIS CONTEXT

There are different ways to start the preliminary design of a composite part, but the zone-based design is ideal to capture analysis constraints and predict the behavior of the part inside the design environment by importing thickness laws. The thickness laws are calculated as a result of FEA analysis. The composites part design workbench in CATIA provides easy-to-use dedicated zone creation and modification features. Zone-based modeling contributes to significant time savings with the ability to perform concurrent engineering with mating parts. The image below shows a wing panel with a grid created from ribs and spars in assembly context and thickness law for each cell mapped on the grid from a spreadsheet.

untitled

Once the grid information is ready, Composites workbench provides highly productive automatic ply generation from zone capabilities with automatic management of the ply staggering and stacking rules. The ability to quickly and automatically transition from zones to plies while keeping full associativity, allows the designer to focus on the design intent and helps dramatically reduce the number of geometrical tasks required to design the part.

untitled

To further check the viability of a design from the structural strength perspective, it is possible to perform the FEA simulation within the CATIA environment using the Elifini solver of CATIA analysis. The full associativity with composites workbench is maintained and true fiber angles are taken into account. To address the non-linear aspect of FEA, is it possible to export the plies data in the form of layup files to Abaqus CAE using the composites fiber modeler plug-in. In case design modifications are needed, it is possible to edit and modify any ply or sequence in the composites workbench and instantly export the modified layup file to simulation workbench or Abaqus CAE for validation. Thus designers and analysts can work together in collaboration during the composites development process, saving time, improving product quality, and preventing costly error. […]

Previously, my colleague Mark Van DeBogert touched in an earlier blog post on the business side of CATIA 3D Master. Today, we are going to go a little further into understanding what is available to purchase from the Dassault CATIA V5 product line. As with a lot of Dassault CATIA products, there are two levels of the Functional Tolerancing & Annotation offering.  The licenses are FT1 and FTA respectively.

The FT1 license allows you to easily create your 3D annotations, tolerances, and specifications, as it does provide a pretty comprehensive set of dress up features, text and flag note features. 3D Dimensioning can be done in both part and assembly levels.  You display and manage your annotations by simply setting up various annotation planes, and you can easily switch a mirrored annotation with the click of a button, as shown below.

The number one and most significant difference between FT1 and FTA is the Tolerancing Advisor.  The advisor guides the user through the creation of annotations and dimensions according to the selected geometrical element, plus an existing annotation and the selected standard (ANSI, ASME, ISO, etc.) the user is working to. For the novice user, it will usually prevent making gross mistakes; it’s pretty much the all-purpose tool for creating annotations, dimensions, and tolerances – it can’t necessarily do everything, but it certainly goes a long way. Everything created using the tolerance advisor is what’s referred to as Semantic.

In order for something to be Semantic it needs to meet two criteria: […]

The Dassault Systèmes SIMULIA portfolio releases new versions of its software products every year, and this year is no different. The first release of Abaqus 2017 is now available for download at the media download portal. SIMULIA has developed and broadcast 2017 release webinars to make users aware of new features available in the 2017 release, but those webinars are long recordings ranging from one to two hours each, which can be daunting. This blog post will provide a brief highlight of materials and explicit updates in Abaqus solver 2017. A more detailed explanation of any mentioned update, or answers to further questions, can be obtained either by listening to the webinar recordings at the SIMULIA 3DExperience user community portal, leaving a comment on this post, or contacting us.

SPH boundary conditions improvements

SPH particles located on opposite sides of a surface cannot interact with each other in the absence of boundary condition. This was not the case in previous releases; in Abaqus 2017, this is the default boundary condition setting. There are further improvements in tensile instability control to prevent instability among particles subjected to local tensile stresses. Below is an example in which there are SPH particles in two different chambers; the lower chamber particles are subjected to displacement BC while upper chamber particles are not subjected to any BC.

DEM improvements

  1. The series and parallel search algorithms for contact are unified to improve the DEM performance. The search cells are created only once.
  2. It is now possible to run DEM jobs with particle generators in parallel mode. This means more than one particle generator can be active while a DEM job is running.
  3. In previous releases, only fixed time increment scheme was available and it was difficult for the user to predict the appropriate time increment. In the 2017 release, an automatic time increment scheme has been introduced.
  4. Adhesive particle mixing is now supported. The algorithm used is called JKR adhesive inter particle contact. Both Hertz contact and friction are supported.

Material Enhancements

  1. There is some good news for users in the health care industry who design and manufacture cardiovascular stents: Super-elasticity, which was previously a part of user subroutines, is now available in the Abaqus 2017 material library. The motivation is Nitinol, a nickel titanium alloy used in cardiovascular stents because of super elasticity, shape memory effect, biocompatibility, and fatigue. The Nitinol model exhibits linear elastic Austensite behavior at lower stresses. On further loading, transformation from Austensite to Martensite occurs but behavior is still linear elastic. Beyond full transformation, Martensite exhibits elastic plastic behavior. A similar phenomenon is observed in compression loading. It is supported in Abaqus CAE.

 

 

 

 

 

 

 

 

 

 

2. A multilinear kinematic hardening model is now available in Abaqus 2017. In previous releases, this model was available as a user subroutine material called ABQ_MULTILIN_KINHARD.  Plasticity follows an array of perfectly plastic subvolumes that follow Von-Mises criteria, each with a unique yield strength. This model offers more flexibility than the linear kinematic hardening model. It is available only in Abaqus standard and intended for thermo-mechanical fatigue of metals. It is supported in Abaqus CAE.

3. The definition of damage initiation and damage evolution of cohesive elements with traction separation response has been enhanced to include rate dependent cohesive behavior. It is available only in Abaqus explicit. Non-linear damage initiation of ductile metals is now supported in Abaqus 2017. This model provides more flexibility to predict damage under arbitrary loading paths. It is available both in Abaqus standard as well as in explicit for ductile, shear and Johnson Cook material models.

 

4. Non-linear damage initiation of ductile metals is now supported in Abaqus 2017. This model provides more flexibility to predict damage under arbitrary loading paths. It is available both in Abaqus standard and explicit for ductile, shear and Johnson Cook material models.

5. The parallel rheological framework model now supports plane stress elements as well, in both standard as well as in explicit.

6. A new subroutine for user defined thermal expansion coefficients has been introduced. It is called VUEXPAN. This routine can be used in explicit to define thermal strain increments as a function of temperature, time, element number, state, or field variable. It is available only with Mises plasticity, Hill Plasticity and Johnson Cook model.

Usability Enhancements

1.Enhancements in distortion control: In Abaqus explicit, it is possible to convert highly compressed solid elements to linear kinematic formulation. Once that happens, the analysis does not stop even if the elements get inverted. It is activated by default when solid elements are used with crushable foam material.

2. Larger stable time increments in Abaqus explicit: In Abaqus 2017, there is an improved estimate method of element characteristic length to get larger stable time increments. It is defined in explicit step as follows:

*Dynamic, Explicit, improved DT method=YES (by default) or NO

It is further possible to invoke this method selectively in individual sets instead of global model as follows

*section control, improved DT method = YES or NO

 

The Dassault Systèmes SIMULIA portfolio releases new versions of its software products every year, and this year is no different. The first release of Abaqus 2017 is now available for download at the media download portal. SIMULIA has developed and broadcast 2017 release webinars to make users aware of new features available in the 2017 release, but those webinars are long recordings ranging from one to two hours each, which can be daunting. This blog post will provide a brief highlight of standard and explicit updates in the Abaqus 2017 Solver. A more detailed explanation of any mentioned update, or answers to further questions, can be obtained either by listening to the webinar recordings at the SIMULIA 3DExperience user community portal, leaving a comment on this post, or contacting us.

Updates in Abaqus Standard

Abaqus Standard 2017 has been substantially improved with respect to contact formulations. Mentioned below are the key highlights of various contact functionalities improvements.

  • Edge to surface contact has been enhanced with beams as master definition. This new approach facilitates the phenomenon of twist in beams during frictional contact.
  • Cohesive behavior in general contact.

General contact has always been useful in situations where either it becomes cumbersome to visualize and define large number of contact pairs, even by using contact wizard, or it’s not possible to predict contact interactions based on initial configuration. The general contact support now includes cohesive behavior, thereby making it possible to define contact in situations shown in figure below.Image1

 

Cohesive contact does not constrain rotational degree of freedoms. These DOFs should be constrained separately to avoid pivot ratio errors.

There have been few other changes in cohesive contact interactions. In the 2016 release, only first time cohesive contact was allowed by default, i.e. either a closed cohesive behavior at initial contact or an open initial contact that could convert to a close cohesive contact only once. In the 2017 release, only a closed initial contact could maintain a cohesive behavior by default settings. Any open contact cannot be converted to cohesive contact later. However, it is possible to change the default settings.

Image1

 

  • Linear complementary problem

A new step feature has been defined to remove some limitations of perturbation step. In earlier releases, it was not possible to define a contact in perturbation step that changes its status from open to close or vice versa. In 2017 release, an LCP type technique has been introduced in perturbation step to define frictionless, small sliding contact that could change its contact status. No other forms of non-linearity can be supported in perturbation steps.  LCP is available only for static problems. Any dynamic step is not supported.

Image1

Updates in Abaqus XFEM (crack modeling) […]

© Tata Technologies 2009-2015. All rights reserved.