Category "Dassault Systemes"

CATIA has many naming conventions and packaging options. In this post, we’ll be looking specifically at CATIA V5, with future posts examining CATIA V6 and 3DEXPERIENCE.

Version 5 began back in the late 90s as a complete re-write of the previous version. As development progressed, new releases were produced. A release indicates enhanced or new functionality over prior releases – however, still on the same version. A collection of bug fixes would be referred to s Service Pack, and specific bug fixes are referred to as a Hot Fix. Putting it all together we would see something like:

V5 R19 SP 9 HF 108

This would translate to:
Version CATIA 5, release 19, service pack 9, hot fix 108

Why is this important? Because many OEMs require their suppliers to deliver designs that specifically match their own.

Classic vs. PLM Express

When looking for a seat of CATIA, you would be looking for what Dassault calls a configuration. Configurations are commonly referred to by their trigram (a character letter acronym) that is specific to the type of design required. For instance, a mechanical designer would be interested in either an “MD1” or “MD2” – “Mechanical Design 1” or “Mechanical Design 2,” respectively – depending on level of complexity. We call these configurations Classic.

Later, to support their data management solution, SmarTeam, Dassault came up with new bundles called “CATIA PLM Express.” These bundles included licenses for SmarTeam, encouraging use by lowering the cost of entry. This also the first time we see the idea of roles. Rather than bundling functionality by the type of design, in CATIA PLM Express, the bundles are made more intuitive by considering the role of the designer. You could get these bundles, or modules, specific to Manufacturing Engineers, or Layout Engineers. The idea is to gather the modules required by the desired outcome (lathe machined parts, structural steel frames), rather than the methodology (mechanical design). You can build your own PLM Express here.

cat-1074657_1280There are a few additional terms to define when working with PLM Express. It all starts with the bundle called “CATIA TEAM PLM,” or in trigram speak “CAT,” which includes most of the basic design tools and some data management licenses. This is the base configuration upon which everything else is built.

The next level of bundles are called Enablers. Enablers form the starting point of the role-based package. A designer that needs to produce structural steel frames would start their selection in the “Layout Engineer” group of enablers, and would select the one named “CATIA Structure & Steelwork Layout,” or “SSE.” A tooling engineer would look at the group “Mechanical Product Engineer,” and the enabler of choice would be “CATIA Jigs & Tooling Creation,” or “JTE.” In the tooling example, the common way of referring to the package is “CAT+JTE.”

If enablers start the specialization bundles, the next level called Extensions round out. These bundles are very specific to a role or outcome. Case in point is “CATIA Composites Design,” or “CPX.” Another example would be “CATIA Electrical Cable Layout,” or “ECX” found in the “Layout Engineer” grouping, and could be added to the enabler “CATIA Layout & Annotations,” or “LOE.” That would create the final package of “CAT+LOE+ECX.”

A special note: in order to get access to an extension bundle, an enabler bundle must accompany it. In turn, to access an enabler, you must first start with CAT. Think of them as levels of a house: CAT, the base configuration, would be the first floor. The second floor consists of enablers, and the third floor are enablers. You can’t get to the third floor without the second. You can have any combination of enablers and extensions, regardless of the role grouping. So our tooling designer (CAT+JTE), may, for some reason, need access to the Electrical Cable Layout extension (ECX), found in the “Layout Engineer” grouping.

One final note, and this is a biggie.

When an OEM specifies a version level, say V5 R22 SP5 HF 16, they may also prescribe a classic configuration like MD2. This is not gospel. You may use a PLM Express bundle instead; both use the same file formats. They are both V5, and are interchangeable.

This can be extremely confusing, especially for new people just entering the CATIA world, and all these trigrams and bundles can be daunting. Our team can help you determine what you need and put together the bundle that makes the most sense for your situation. Just let us know how we can be of service.

untitled

Composites always had a well-defined place in the aerospace industry because of their properties: lightweight to make overall design lighter and toughness to make overall design bear the aero structural loads. At present, from aircraft fairing to train noses, boat hulls and wind turbines, composites offer dramatic opportunities to meet increasing cost-driven market requirements and environmental concerns. However, modeling of composites in a seamless collaborative environment has always been a challenge. This is because of multiple aspects of composites modeling such as design, simulation, and manufacturing that made it quite a tough task on a single platform.

CATIA composites workbench now offers a solution to address various aspects of composites modeling in a unified manner. The objective of this blog post is to provide information on composites workbench capabilities with respect to design, simulation, and manufacturability of composites.

DESIGN IN ANALYSIS CONTEXT

There are different ways to start the preliminary design of a composite part, but the zone-based design is ideal to capture analysis constraints and predict the behavior of the part inside the design environment by importing thickness laws. The thickness laws are calculated as a result of FEA analysis. The composites part design workbench in CATIA provides easy-to-use dedicated zone creation and modification features. Zone-based modeling contributes to significant time savings with the ability to perform concurrent engineering with mating parts. The image below shows a wing panel with a grid created from ribs and spars in assembly context and thickness law for each cell mapped on the grid from a spreadsheet.

untitled

Once the grid information is ready, Composites workbench provides highly productive automatic ply generation from zone capabilities with automatic management of the ply staggering and stacking rules. The ability to quickly and automatically transition from zones to plies while keeping full associativity, allows the designer to focus on the design intent and helps dramatically reduce the number of geometrical tasks required to design the part.

untitled

To further check the viability of a design from the structural strength perspective, it is possible to perform the FEA simulation within the CATIA environment using the Elifini solver of CATIA analysis. The full associativity with composites workbench is maintained and true fiber angles are taken into account. To address the non-linear aspect of FEA, is it possible to export the plies data in the form of layup files to Abaqus CAE using the composites fiber modeler plug-in. In case design modifications are needed, it is possible to edit and modify any ply or sequence in the composites workbench and instantly export the modified layup file to simulation workbench or Abaqus CAE for validation. Thus designers and analysts can work together in collaboration during the composites development process, saving time, improving product quality, and preventing costly error. […]

Previously, my colleague Mark Van DeBogert touched in an earlier blog post on the business side of CATIA 3D Master. Today, we are going to go a little further into understanding what is available to purchase from the Dassault CATIA V5 product line. As with a lot of Dassault CATIA products, there are two levels of the Functional Tolerancing & Annotation offering.  The licenses are FT1 and FTA respectively.

The FT1 license allows you to easily create your 3D annotations, tolerances, and specifications, as it does provide a pretty comprehensive set of dress up features, text and flag note features. 3D Dimensioning can be done in both part and assembly levels.  You display and manage your annotations by simply setting up various annotation planes, and you can easily switch a mirrored annotation with the click of a button, as shown below.

The number one and most significant difference between FT1 and FTA is the Tolerancing Advisor.  The advisor guides the user through the creation of annotations and dimensions according to the selected geometrical element, plus an existing annotation and the selected standard (ANSI, ASME, ISO, etc.) the user is working to. For the novice user, it will usually prevent making gross mistakes; it’s pretty much the all-purpose tool for creating annotations, dimensions, and tolerances – it can’t necessarily do everything, but it certainly goes a long way. Everything created using the tolerance advisor is what’s referred to as Semantic.

In order for something to be Semantic it needs to meet two criteria: […]

The Dassault Systèmes SIMULIA portfolio releases new versions of its software products every year, and this year is no different. The first release of Abaqus 2017 is now available for download at the media download portal. SIMULIA has developed and broadcast 2017 release webinars to make users aware of new features available in the 2017 release, but those webinars are long recordings ranging from one to two hours each, which can be daunting. This blog post will provide a brief highlight of materials and explicit updates in Abaqus solver 2017. A more detailed explanation of any mentioned update, or answers to further questions, can be obtained either by listening to the webinar recordings at the SIMULIA 3DExperience user community portal, leaving a comment on this post, or contacting us.

SPH boundary conditions improvements

SPH particles located on opposite sides of a surface cannot interact with each other in the absence of boundary condition. This was not the case in previous releases; in Abaqus 2017, this is the default boundary condition setting. There are further improvements in tensile instability control to prevent instability among particles subjected to local tensile stresses. Below is an example in which there are SPH particles in two different chambers; the lower chamber particles are subjected to displacement BC while upper chamber particles are not subjected to any BC.

DEM improvements

  1. The series and parallel search algorithms for contact are unified to improve the DEM performance. The search cells are created only once.
  2. It is now possible to run DEM jobs with particle generators in parallel mode. This means more than one particle generator can be active while a DEM job is running.
  3. In previous releases, only fixed time increment scheme was available and it was difficult for the user to predict the appropriate time increment. In the 2017 release, an automatic time increment scheme has been introduced.
  4. Adhesive particle mixing is now supported. The algorithm used is called JKR adhesive inter particle contact. Both Hertz contact and friction are supported.

Material Enhancements

  1. There is some good news for users in the health care industry who design and manufacture cardiovascular stents: Super-elasticity, which was previously a part of user subroutines, is now available in the Abaqus 2017 material library. The motivation is Nitinol, a nickel titanium alloy used in cardiovascular stents because of super elasticity, shape memory effect, biocompatibility, and fatigue. The Nitinol model exhibits linear elastic Austensite behavior at lower stresses. On further loading, transformation from Austensite to Martensite occurs but behavior is still linear elastic. Beyond full transformation, Martensite exhibits elastic plastic behavior. A similar phenomenon is observed in compression loading. It is supported in Abaqus CAE.

 

 

 

 

 

 

 

 

 

 

2. A multilinear kinematic hardening model is now available in Abaqus 2017. In previous releases, this model was available as a user subroutine material called ABQ_MULTILIN_KINHARD.  Plasticity follows an array of perfectly plastic subvolumes that follow Von-Mises criteria, each with a unique yield strength. This model offers more flexibility than the linear kinematic hardening model. It is available only in Abaqus standard and intended for thermo-mechanical fatigue of metals. It is supported in Abaqus CAE.

3. The definition of damage initiation and damage evolution of cohesive elements with traction separation response has been enhanced to include rate dependent cohesive behavior. It is available only in Abaqus explicit. Non-linear damage initiation of ductile metals is now supported in Abaqus 2017. This model provides more flexibility to predict damage under arbitrary loading paths. It is available both in Abaqus standard as well as in explicit for ductile, shear and Johnson Cook material models.

 

4. Non-linear damage initiation of ductile metals is now supported in Abaqus 2017. This model provides more flexibility to predict damage under arbitrary loading paths. It is available both in Abaqus standard and explicit for ductile, shear and Johnson Cook material models.

5. The parallel rheological framework model now supports plane stress elements as well, in both standard as well as in explicit.

6. A new subroutine for user defined thermal expansion coefficients has been introduced. It is called VUEXPAN. This routine can be used in explicit to define thermal strain increments as a function of temperature, time, element number, state, or field variable. It is available only with Mises plasticity, Hill Plasticity and Johnson Cook model.

Usability Enhancements

1.Enhancements in distortion control: In Abaqus explicit, it is possible to convert highly compressed solid elements to linear kinematic formulation. Once that happens, the analysis does not stop even if the elements get inverted. It is activated by default when solid elements are used with crushable foam material.

2. Larger stable time increments in Abaqus explicit: In Abaqus 2017, there is an improved estimate method of element characteristic length to get larger stable time increments. It is defined in explicit step as follows:

*Dynamic, Explicit, improved DT method=YES (by default) or NO

It is further possible to invoke this method selectively in individual sets instead of global model as follows

*section control, improved DT method = YES or NO

 

The Dassault Systèmes SIMULIA portfolio releases new versions of its software products every year, and this year is no different. The first release of Abaqus 2017 is now available for download at the media download portal. SIMULIA has developed and broadcast 2017 release webinars to make users aware of new features available in the 2017 release, but those webinars are long recordings ranging from one to two hours each, which can be daunting. This blog post will provide a brief highlight of standard and explicit updates in the Abaqus 2017 Solver. A more detailed explanation of any mentioned update, or answers to further questions, can be obtained either by listening to the webinar recordings at the SIMULIA 3DExperience user community portal, leaving a comment on this post, or contacting us.

Updates in Abaqus Standard

Abaqus Standard 2017 has been substantially improved with respect to contact formulations. Mentioned below are the key highlights of various contact functionalities improvements.

  • Edge to surface contact has been enhanced with beams as master definition. This new approach facilitates the phenomenon of twist in beams during frictional contact.
  • Cohesive behavior in general contact.

General contact has always been useful in situations where either it becomes cumbersome to visualize and define large number of contact pairs, even by using contact wizard, or it’s not possible to predict contact interactions based on initial configuration. The general contact support now includes cohesive behavior, thereby making it possible to define contact in situations shown in figure below.Image1

 

Cohesive contact does not constrain rotational degree of freedoms. These DOFs should be constrained separately to avoid pivot ratio errors.

There have been few other changes in cohesive contact interactions. In the 2016 release, only first time cohesive contact was allowed by default, i.e. either a closed cohesive behavior at initial contact or an open initial contact that could convert to a close cohesive contact only once. In the 2017 release, only a closed initial contact could maintain a cohesive behavior by default settings. Any open contact cannot be converted to cohesive contact later. However, it is possible to change the default settings.

Image1

 

  • Linear complementary problem

A new step feature has been defined to remove some limitations of perturbation step. In earlier releases, it was not possible to define a contact in perturbation step that changes its status from open to close or vice versa. In 2017 release, an LCP type technique has been introduced in perturbation step to define frictionless, small sliding contact that could change its contact status. No other forms of non-linearity can be supported in perturbation steps.  LCP is available only for static problems. Any dynamic step is not supported.

Image1

Updates in Abaqus XFEM (crack modeling) […]

The Dassault Systèmes SIMULIA portfolio releases new versions of its software products every year, and this year is no different. The first release of Abaqus 2017 is now available for download at the media download portal. In this blog post, I provide a brief highlight of updates in Abaqus CAE 2017. A more detailed explanation of any mentioned update, or answers to further questions, can be obtained either by listening to the webinar recordings at SIMULIA 3D Experience user community portal, leaving a comment on this post, or contacting us.

  • Consistency check for missing sections

Abaqus CAE users would probably agree that this mistake happens quite often, even though the parts with defined section assignments are displayed in a separate color. In previous releases, this check was not included in data check runs, so it was not possible to detect this error unless a full run was executed. In the 2017 release, missing regions can be identified in a data check run, thus saving time by eliminating fatal error runs.

image1

 

  • New set and surface queries in query toolset

The sets and surfaces can be created at part as well as assembly level. In earlier releases, it was not possible to see the content of a set or surface in the form of text, though it was possible to visualize the content in the viewport. In the 2017 release, query toolbox includes set and surface definition options. In case of sets, information about geometry, nodes, and elements can be obtained with respect to label, type, connectivity and association with part or instance, whichever is applicable. In case of surfaces, name, type, and association with instances, constraints, or interactions can be obtained.

image1

 

  • Geometry face normal query

In the 2017 release, it is possible to visualize the normal of the face or surface by picking it in the viewport. In case of planar faces, normal is displayed instantly. In case of curved faces, CAE prompts the user to pick a point location on the face by various options.

image1

[…]

In the years to come, fuel efficiency and reduced emissions will be key factors in determining success within the transportation & mobility industry. Fuel economy is often directly associated with the overall weight of the vehicle. Composite materials have been widely used in the aerospace industry for many years to achieve the objectives of light weight and better performance at the same time.

The transportation & mobility industry has been following the same trends, and it is not uncommon to see the application of composites in this industry sector nowadays; however, unlike the aerospace industry, wide application of composites instead of metals is not feasible in the automotive industry. Hence, apart from material replacement, other novice methods to design and manufacture lightweight structures without compromise in performance will find greater utilization in this segment. In this blog post, I will discuss the application of TOSCA, a finite element based optimization technology.

The lightweight design optimization using virtual product development approach is a two-step process: concept design followed by improved design.

Design concept: The product development costs are mainly determined in the early concept phase. The automatic generation of optimized design proposals will reduce the number of product development cycles and the number of physical prototypes; quality is increased and development costs are significantly reduced. All you need is the definition of the maximum allowed design space – Tosca helps you to find the lightest design that fits and considers all system requirements. The technology associated with the concept design phase is called topology optimization that considers all design variables and functional constraints in optimization cycle while chasing the minimum weight objective function. The technique is iterative that often converges to a best optimal design.

HOW IT WORKS

The user starts with an initial design by defining design space, design responses, and objective function. Design space is the region from where material removal is allowed in incremental steps and objective function is often the overall weight of the component that has to be optimized. With each incremental removal of material, the performance of the component changes. Hence each increment of Tosca is followed by a finite element analysis to check existing performance against target performance. If target performance criteria is satisfied, the updated design increment is acceptable and TOSCA proceeds to the next increment. This process of incremental material removal is continued until the objective function is satisfied or no further design improvement is feasible. The image below depicts a complete CAD to CAD process flow in Tosca. The intermediate processes include TOSCA pre-processing, TOSCA and a finite element code based co-simulation and TOSCA post processing.

Tosca workflow

During the material removal process, TOSCA may be asked to perform the optimization that provides a feasible solution not only from a design perspective but from a manufacturing perspective as well. For example, TOSCA may be asked to recommend only those design variations that can be manufactured using casting and stamping processes. This is possible by defining one or more of manufacturing constraints available in TOSCA constraints library.

manufacturing constraints

While the topology optimization is applicable only on solid structures, it does not mean TOSCA cannot perform optimization on sheet metal parts. The sizing optimization module of TOSCA allows users to define thickness of sheet metal parts as design variables with a lower bound and an upper bound. […]

In this blog post, we will look into the basics of surface development and gain an understanding of what continuity is. Years ago when I used to teach full time I would tell my students that I called it “continue-ity,” the reason being that you are essentially describing how one surface continues or flows into another surface. Technically, you could describe curves and how they flow with one another as well. So let’s get started.

G0 or Point Continuity is simply when one surface or curve touches another and they share the same boundary.  In the examples below, you can see what this could look like on both curves and surfaces.

G0 Continuity

G0 Continuity

 

G0 Curve Continuity

G0 Curve Continuity

As we progress up the numbers on continuity, keep in mind that the previous number(s) before must exist in order for it to be true. In other words, you cant have G1 continuity unless you at least have G0 continuity. In a sense, it’s a prerequisite.  G1 or Tangent continuity or Angular continuity implies that two faces/surfaces meet along a common edge and that the tangent plane, at each point along the edge, is equal for both faces/surfaces. They share a common angle; the best example of this is a fillet, or a blend with Tangent Continuity or in some cases a Conic.  In the examples below, you can see what this could look like on both curves and surfaces. […]

It’s time to share more specials for the month of December! Check out these offers from Dassault Systèmes and Tata Technologies, which expire December 30th.  It truly is the best time of year to purchase software for all of your manufacturing and design needs!

Dassault Systèmes Promotions

  • Deals on CATIA End Soon!Grow with CATIA: Save up to 35% on all CATIA V5 products and select 3D EXPERIENCE solutions, including configurations such as MD2, CAT, or MDHX, as well as, add-ons and shareables like FPE, MCE, or ASD.
  • CATIA Machining Deal: Save up to 50% on all CATIA Machining portfolios and discover the value of integrated design and manufacturing. CATIA Machining can reduce your programming time and increase your competitiveness.

Terms and conditions apply. Please contact us here or email me at carol.hansen@tatatechnologies.com to inquire about an offer.

 

Tata Technologies SpecialsDassault Systemes Training

Space: the final frontier!

…at least that is how I am beginning to feel as design software and its features evolve. In this post, I want to talk about the basics – specifically the basics of component design.

The age-old question will arise at times: do I begin the design at 0,0,0 or do I design the component in its assembly position? Does it matter? Well, yes and no. With most CAD software packages, you have the ability to constrain or mate the feature to the component it is mating to. So technically, almost every component can be designed at 0,0,0 and then just assembled when you are done, as long as you have a mating condition to work with. This method is typically referred to as Bottom Up design. You see this most often in design of off-the-shelf items you would basically plug and play as needed, e.g. Fasteners, Tubing, Brackets, etc.

Fasteners

Fasteners

The alternative to this type of design is when you have a group of components that don’t necessarily mate together but need to come into the correct assembly position every time they are inserted. This method is typically referred to as Top Down design.  In the Automotive realm of design, all of the body panels are designed using a top down method.  Generally you will hear the term “designed in body position,” which indicates it is a top down design.

The key to working on a top down design is that every component is designed using a common axis system, aka common 0,0,0 location. The major systems in a vehicle that are used in other vehicles as well will be developed using a common axis system that won’t be the vehicle axis system.  For example, an engine would maybe have an axis system built at the rear face of the block and the centerline of the crank. […]

© Tata Technologies 2009-2015. All rights reserved.