Category "Digital Engineering"

Does your organization struggle to produce CAD and digital definitions of product? Is the CAD development of product a bottleneck in your process? If the answer is yes, you could benefit from a Digital Engineering Benchmark.

The Digital Engineering Benchmark assessment captures the opinions of senior and knowledgeable personnel in your organization on the current state and future Digital Engineering requirements for your business. In addition, a priority for improvement and an assessment of current effectiveness is recorded. It centers on 17 key Digital Engineering “Pillars” ranging from 3D CAD Standards, through to CAD Extensions. The pillars are listed below:

  1. 3D CAD Standards
  2. Drawing Standards
  3. CAD Templates
  4. 3D Standard Features
  5. Standard Parts Library
  6. Materials Library
  7. Automated Drawing Generation
  8. 3D Master
  9. Automated Designs
  10. Automation Scripts
  11. Digital Mockup
  12. Spatial Analysis
  13. Special CAD Extensions
  14. Design for Manufacturing
  15. CAD Checking Tools
  16. Intellectual Property Protection
  17. Publications

After the 17 pillars have been covered, senior and knowledgeable personnel are also invited to “spend” an assumed benefit in value areas within your business. The areas identified are improving time to market, increasing the portfolio of the company and improving product quality.

Finally, the tool produces a comprehensive report showing the customer’s current state of maturity and a benchmark comparison with the industry.

Participants have found this process to be very useful as it allows them to prioritize their initiatives, gives a high level view of their roadmap to success and provides them with industry benchmark information

My previous post described the “Digital Twins” in general and the importance of PLM to support it. To begin with a Digital Twin need to provide the means to design, validate and optimize a part, product, manufacturing process or production facility in the virtual world using a set of computer models. It should enable companies to do these things quickly, accurately and as close as possible to the real thing – the physical counterpart. They also need to consume the data from sensors that are installed on physical objects to represent their near real-time status, working condition or position.

Digital Twins was in the making for many years , especially around advanced robotics. Siemens has recognized the value of the digital twin for a long time and enabled the development of full 3D models for automotive body assembly cells. These models were used to simulate, validate and optimize robotic operations before they were executed on the shop floor. With an extremely high degree of fidelity, these applications could not only simulate a cell, but also enable its near perfect virtual commissioning. Advances in computer science have made it possible to broaden the scope of the primitive digital twin to include many more capabilities, information, inputs and outputs. Today Siemens support digital twins for product design, manufacturing  process planning and production using the Smart  Factory loop and via smart products.

One of the most important value of a digital twin is that it enables flexibility in manufacturing and reduces the time needed for product design, manufacturing process and system planning, and production facility design; thus helping companies to develop and introduce new products to the market much faster than ever.  Connecting Engineering , manufacturing process design and actual production is the foundation and starting point for Digital Twins.

A digital twin also improves quality and even supports new business models that offer opportunities for small-to-midsize companies to expand and bring more high-tech capabilities into their shops. Digital twins will help companies become more flexible,  reduce time-to-market and costs, improve quality and increase productivity at all levels of the organization.  When implementing a true “Digital Twin” on the first day becomes a  big ask for companies,  they might want to adopt it in a phased manner, may be in a similar way it evolved – starting with automated manufacturing process design and production.  My next blog will outline the three pillars involved in deploying a digital twin .

Digital twins are the next new thing for product development in this digitalization era. They bring the physical and the digital worlds closer than ever and represent everything in the environment of a physical product, and not just the product itself and its production system.  Enabled by Product Lifecycle Management (PLM), and supported by advanced communications processes and workflows; often described as digital thread, Digital Twins represent the complete physical product throughout the entire lifecycle, end-to-end.

As products become ever more complex due to ever-increasing design complexity, regulatory requirements, higher software content, and the like, conventional simulations can constrain problem solving and decision-making. Digital Twins are much more than the typical CAE simulations with just design specifications,  materials properties, geometric models, components, and analyses such as anticipated behavior under load . It moves past the primary reliance of conventional simulations on geometry. Even the best of today’s simulations are largely limited to geometric data in CAD, CAE, and PDM solutions plus other elements contained in engineering repositories. Conventional simulations are limited to problems that are tightly circumscribed.   Digital twins have no such limitation: geometry and other engineering constraints are just starting points.  Digital Twins are virtual frameworks for managing product data that is orders of magnitude more varied than what conventional simulations handle and more importantly to turn it into actionable information -information that can be used for making decisions and for supporting those decisions as elements of business models.  This new framework uses latest digital technologies to simulate and accurately predict physical product behavior, which can change a business model and provide new revenue and value-producing opportunities; it is the process of moving to a digital business.

The growing importance of digital twins adds to PLM’s key role as the innovation platform. End-to-end digitalization of both products and processes is essential for any enterprise that intends to implement and take advantage of this new models . This means PLM itself must also continually adapt to support the design and delivery of innovative products and services and further enhance its abilities on collaboration, connectivity, and interoperability; which forms the foundations of any innovative platform .

There was a day when it was unlikely that a company would buy a 3D CAD system without extensively evaluating it.  They required demos, trials, benchmarks, pilot projects and extensive financial ROI analysis.  Are those days gone?  Early in my career, I made a living by simply being able to demonstrate relatively new 3D CAD technology.  These days, a demo is rarely required for purchases of 3D CAD.  Decisions about a company’s core 3D CAD package have generally been previously made, or are now based on data formats of customers or suppliers.

It seems that 3D CAD is simply now an expected part of product development processes and an integral part of PLM in general.  The specific version of 3D CAD doesn’t seem to be nearly as critical as companies previously expected them to be.  Most can now get the job done in small to mid-size companies, with minor differences depending on the specific situation.

There does still seem to be a “pecking order” for the various CAD systems in the manufacturing sector.  The large companies with the broadest set of requirements (and the deepest pockets) generally define the standard.  This includes the Automotive and Aerospace OEMs as an example.  Once they settle on a primary CAD system, many other suppliers base their CAD requirements upon the OEM’s decision.  This doesn’t automatically mean the suppliers choose the same CAD system; just that the supplier needs to be able to communicate and exchange data with the OEM in an efficient manner.  Often times, an automotive supplier will obtain a license or two of the OEM’s chosen CAD software, but it will not be deployed across their entire environment.  The “Top-Tier” CAD that the OEM decided upon may only be used to translate and communicate directly with the OEM, while the bulk of their CAD users might be using a “Mid-Tier” CAD system that is perfectly capable of meeting the supplier’s design requirements.  A host of emerging cloud based CAD technology is also available.

 

So what does this mean to the industry?  Focus on the next thing.  Maybe that is a fully electronic PLM environment, or updated NC or additive manufacturing software.  It could be the adoption of up-front simulation technology to accelerate the design cycle.  There are a lot of things from a technology continuity perspective that can still be addressed once the CAD platform has been settled upon.  Just don’t lose sight of other opportunities for continuous improvement once your CAD house is in order.

There is an interesting news regarding CATIA to be shared by composites user community. While almost all the composites related functionalities such as composites design by zones/plies, ply drop offs, core sampling, ply producibility, ply flattening, ply cut outs, lay-up export etc. have been existing as native CATIA offerings in composites workbenches, one valuable piece has been missing. That piece is called Laser Projection, a tool that can assist manufacturing guys in placing cut plies at right location on the tool. Earlier this functionality was offered through one of Dassault Systemes software partner called Majestic. However, Majestic got acquired by Autodesk a while ago so Dassault Systemes decided to develop a similar functionality in-house.

Laser Projection functionality was introduced in V5-6R 2016 release of CATIA, both in classic as well as in Express configurations and has been refined in service packs such as V5-6R 2016 SP2 and SP3. In classic configuration license is named as CLA and in express configuration license is named as LPX. Either CATIA composites design or manufacturing workbenches are a pre-requisite in either of these configurations. This technology is most suitable for most hand-layup parts such as panels, hulls, wind blades etc.

Within the application, it is possible to define any number of lasers by coordinates and assign properties to them such as its dimensions and range in terms of distance, horizontal and vertical angles. It is also possible to optimize the resource allocation. The reach envelope can be visualized to make sure largest ply in the model can be displayed with given number of lasers in the model. If not, more lasers can be defined or their positions can be changed.

The Laser Projection module is compatible with most commercial available vendor machines such as Virtek, LAP, LPT etc. The core thickness as well as plies thickness is automatically taken into account during projection. It is also possible to change display properties such as laser color, length of normal vectors etc. It is further possible to include additional geometry or text as a part of the display from predefined CATIA sets.

For any further information regarding licensing or functionality of this module, including a demonstration, please approach us and we are ready to help. It is also possible to import the laser projection files such as .py and .cal extensions to review the laser projections data in CATIA laser projection.

In today’s post, I would like to focus on Functional Modeling.

Plastic Part

I’ve always wondered why this workbench never really caught on. Speaking purely from an FM1 trigram standpoint, it comes with the MCE add-on that most people who have PLM Express have added on to their CAC (CAC+MCE).

CAC+MCE

FM1 gets you the Functional Modeling Part Workbench.

Functional Modeling Part Workbench

First let’s talk about what it was created for, which is plastic parts or parts with draft, because it could also be used for core-cavity type parts like castings. This workbench is very unique in that you do not necessarily model in a particular sequence order like you would in the Part Design workbench. Modeling in the Part Design workbench is what we would call traditional feature modeling, i.e. create a sketch then make a pad, then add some dress up features like draft, fillets, then shell it out, etc.

Feature Based Modeling

There is nothing at all wrong with modeling this way – in fact, it is how most of this work is done today! Now let’s look at what we call Functional modeling which looks at a shape and incorporates a behavior for a specific requirement. […]

Today we will continue our series on the hidden intelligence of CATIA V5.  It is important to note that I am using a standard Classic HD2 license for this series In my last post, we discussed building a catalog of parts based on a single part that has a spreadsheet that drives the parameters with part numbers.  What about features?  If CATIA V5 is powerful enough to generate entire parts based on parameters, shouldn’t it also be able to be able to generate repetitive features? For instance, take a boss feature that appears on the B-Side of a plastic part. As a leader, I would not be interested in paying my designer his rates to keep repeatedly modeling a feature that may only change slightly throughout the backside! Model smarter: make once, use many times.

To do this successfully, you must address a few things – the first being how it may change. Of course you may not anticipate all changes, but a good rule of thumb is to try to model with maximum flexibility (big slabs for surfaces, overbuild everything, pay close attention to design intent) and do not use B-reps for your design. Avoid creating and building off of features CATIA builds, meaning whenever possible build your own and pick only from the tree to link to them.  The second issue to address is – what are going to be the parametric numerical inputs to drive the design? See my first post in this series on how to set these up.  i.e. Draft Angle, Wall thickness, Outer Diameter, etc.

Finally, what are going to be the geometric inputs to drive the design?  i.e. Location point, Pull Line, Slide Line, Mating Surface, etc.  A good rule of thumb here is to limit these features to as few as possible that are needed to get the job done. Sometimes it may be beneficial to sketch all this out on paper before you build it; I suggest gathering input from all the possible parties to help you in your definition.

In the example below, I have constructed a boss. Let’s review what I did. […]

This is Part 3 in my series on the hidden intelligence of CATIA V5. To quickly recap what we have already talked about, in my first post I discussed the importance of setting up and using parameters and formulas to capture your design intent and quickly modify things that you know are likely to change. We took those principles a bit farther in my second post and discussed the value of building a design table in those situations when you may have a design with parameters that will vary and that you want to use many times. In that case you could see that we had our rectangular tubing part and could modify its wall thickness, height, and width to make several iterations of basically any size of tubing one would ever need! You would simply keeping doing a Save as… and placing those parts in your working directory to be added into an assembly at some time (I assume).

This methodology would work fine, but today I want to focus on a very cool spin on this theory by building a catalog of your most commonly used parts which are similar enough to be captured in a single model. Using our tubing model, and picking up where we left off, we have a spreadsheet that defines the parameters that change. All we would need to do to build a catalog of each iteration of the design table is add a column to the spreadsheet named PartNumber just as I have it with no spaces in the name and then associate that to the ‘Part Number’ intrinsic parameter that is created automatically when you being a model.

Let’s get started.  I will open both the model and the spreadsheet, edit the spreadsheet with the column, and then add in some part numbers.

Part numbers added

When you save the file, the field should appear in CATIA when you click on the Associations tab. […]

This is an exciting post for me! Dassault has just come out with a couple of new bundles that blow the doors off anything I have seen previously.

CATMEE – Mechanical Engineering Excellence

The first package is named CATMEE; this would be the “Mechanical” version of the package. In Classic terms, previously for this purpose I would have recommended an MD2 trigram.  In PLM Express bundles, I would have recommended a CAC+MCE bundle to these types of users. They are typically heavy on the mechanical solid modeling portion of CATIA, and do not do very much surfacing.  CATMEE is a CAC+MCE on steroids! It includes CAT3DX (which I talked more about in my last post) AND also includes bundles for FPE (Fabricated Product), JTE (Jig and Tool Creation), PRX (Animated Product Review), FTX (3D Master), and TRE (Technical Specifications Review).

CATMEE Package Bundle

I realize that this sounds like a bunch of trigram soup. What does it really mean in CATIA V5? Well from a workbench standpoint, the CAC+MCE add-on looks like this:

CAC+MCE Workbenches

From a workbench standpoint, CATMEE looks like this:

CATMEE Bundle Workbenches

Take a closer look: you get Sheet Metal, 3D GD&T functionality (the good one, FTA!), Mold Tooling, Structure Design, and also DMU! In fact Kinematics, Space Analysis and Fitting Simulation alone can get expensive as an add-on, but here it comes with the bundle. Imagine cutting a section and it actually still being there when you click OK, and being available in the specification tree and updates when you change your part, as well as clearance checks, interference checks, etc.  MD2 and/or CAC+MCE users know exactly what I am talking about!

If you are in the market for a new seat or two this year and you are a mechanical customer, you should talk to your account manager and ask about this package; the new configurations not only help your productivity, but also help you expand your capabilities of what kinds of parts and markets you can get into.

CATMSE – Mechanical and Shape Engineering Excellence

This package is where you will really get your bang for the buck! CATMSE is a package we would have previously bundled as either an HD2 (Classic) or CAC+MCE+HDX (PLM Express). It is designed more for the mechanical and surfacing (Hybrid) type of role as a designer. Traditionally CAC+MCE+HDX overall gave you the GSD version of the Generative Shape Design workbench (better sweep functions, laws, etc) as well as a DL1 (Developed Shapes Toolbar in GSD) and a light version of Freestyle workbench (FS1). […]

“To specialize or not to specialize, that is the question.”

The question of specializing vs. generalizing has arisen in so many aspects: biology, health, higher education, and of course, software.  When one has to decide between the two ends of the spectrum, the benefits and risks must be weighed.

muskrat_eating_plantAs environments have changed over time, animals have had to make a decision: change or perish. Certain species adapted their biology to survive on plants – herbivores – others, meat 0 carnivores.  When in their preferred environments with ample resources, each can thrive.  However, if conditions in those environments change so that those resources are not as bountiful, they may die out. Then comes the omnivore, whose adaptation has enabled them to survive on either type of resource. With this wider capability of survival, there comes a cost of efficiency. The further you move up through the food chain, the less efficient the transfer of energy becomes.  Plants produce energy, only 10% of which an herbivore derives, and the carnivore that feeds on the herbivore only gets 10% of that 10%; i.e. 1% of the original energy.

Three hundred trout are needed to support one man for a year.
The trout, in turn, must consume 90,000 frogs, that must consume 27 million grasshoppers that live off of 1,000 tons of grass.
— G. Tyler Miller, Jr., American Chemist (1971)

doctor-1149149_640When it comes to deciding on a course of action for a given health problem, people have the option to go to their family doctor, a.k.a. general practitioner, or a specialist. There are “…reams of papers reporting that specialists have the edge when it comes to current knowledge in their area of expertise” (Turner and Laine, “Differences Between Generalists and Specialists“)., whereas the generalist, even if knowledgeable in the field, may lag behind the specialist and prescribe out-of-date – but still generally beneficial – treatments.  This begs the question, what value do we place on the level of expertise?  If you have a life-threatening condition, then a specialist would make sense; however, you wouldn’t see a cardiologist if your heart races after a walk up a flight of stairs – your family doctor could diagnose that you need some more exercise.

graduation-907565_640When it comes to higher education, this choice of specializing or not also exists: to have deep knowledge and experience in few areas, or a shallower understanding in a broad range of applications. Does the computer science major choose to specialize in artificial intelligence or networking? Or none at all? How about the music major?  Specialize in classical or German Polka? When making these decisions, goals should be decided upon first. What is it that drives the person? High salary in a booming market (hint: chances are that’s not German Polka)? Or is the goal pursuing a passion, perhaps at the cost of potential income? Or is it the ability to be valuable to many different types of employers in order to change as the markets do? It’s been shown that specialists may not always command a higher price tag; some employers value candidates that demonstrate they can thrive in a variety of pursuits.

Whether you’re looking to take advantage of specialized design products (for instance, sheet metal or wire harnesses), or gaining the value inherent in a general suite of tools present in a connected PLM platform that can do project management, CAPA, and Bill of Materials management, we have the means. A “Digital Engineering” benchmark can help you decide if specialized tools are right for your company. Likewise, our PLM Analytics benchmark can help you choose the right PLM system or sub-system to implement.

Specialize, or generalize? Which way are you headed and why?

© Tata Technologies 2009-2015. All rights reserved.