Category "Digital Engineering"

As a follow up to the BOM in Excel article, what would constitute a perfect system for managing Bills of Material (BOM) in a PLM system?

Let’s divide the capabilities of this ideal system into three categories; mandatory, essential and nice-to-have.

For the sake of definition, a Part is an end item in a BOM structure, and an assembly is a collection of Parts arranged in a BOM structure. Also, this discussion is restricted to eBOM; other types of BOM’s is a much larger topic.

Mandatory

  • Manage Parts making up the BOM
  • Manage Part Attributes such as Date Created, Owner, Make/Buy etc.
  • Manage Documents or Files associated with the Part (CAD, Drawings, Specs etc.)
  • Manage BOM structures of Parts, with indent capability
  • Handle version and revision levels for all Parts
  • Handle version and revision levels for all Assemblies
  • Allow for search capability on Parts and Assemblies
  • Enable reuse of existing Parts in new Assemblies
  • Facilitate comparison of current BOM structures
  • Allow for “where used” enquiries or reports
  • BOM structure export to facilitate external system integration
  • Collapse / expand indented levels
  • One BOM for all – accessible by all users

Essential

  • Manage lifecycle of BOM (In design, Released, In Production, etc.)
  • Distinguish between various types of Parts in Assemblies (Designed, Bought, Complete, In Work, Customer etc.)
  • Allow for comparison between various versions and revisions of BOM
  • Enable BOM view based on release date and different release configuration
  • Duplicate BOM (Save As) allowing for alterations and edits during the process
  • BOM templates for generic products
  • Allow for BOM variants and configurations
  • Based on configuration rules, resolve to exact BOM
  • BOM costing (roll up)
  • Launch BOM selections into Digital Mockup session
  • Enable clash and interference analysis

Nice to Have

  • Pictorial BOM
  • Search in BOMs
  • Part Classification to facilitate reuse
  • BOM weight roll up
  • Link BOM to Requirements
  • Allow for BOM visualization
  • Specific views dependent on user or context

Obviously, each of these requirements is a complete topic in of itself. Also, additional requirements may exist.

Tata Technologies is a global engineering company that helps organizations engineer better products. Visit www.tatatechnologies.com or contact info.americas@tatatechnologies.com.

The Problem

Before computers, engineering designs where carried out by armies of draftsmen toiling over drawing boards in vast offices. Some may still express nostalgia for those days, but like all else, change came along. Today sophisticated computer programs allow engineering designs to be created in a full 3D virtual world with great degrees of precision. In the initial phases of the 3D modeling revolution there was a great debate over 2D vs 3D and because software vendors feared rejection over adoption, they included capacity to derive 2D drawings from the 3D model. The CAD programs essentially allowed the production of documents equivalent to what could be produced by a draftsman. But 3D CAD programs have continuing to improve in terms of functionality and capability; so much that all the information (and more) that used to be communicated via a 2D Drawing can be included in the single 3D model. Such an approach is far more efficient.

However, when asked organization after organization will admit to releasing and maintaining 2D Drawings for all sorts of purposes.

So, if technology has moved on beyond the 2D drawing, why are they still widely used in the industry?

The Technology

If you dig into the reasons why 2D Drawings still exist, various technical reasons are commonly offered:

  1. Dimensioning and tolerancing cannot be fully completed on a 3D model
  2. Tabled parts are difficult to create in 3D
  3. Consumers of drawings do not have the capability to view 3D
  4. 3D models cannot be printed out

Current Technology has an answer to all these problems:

  1. CAD software has core modules that can create a fully annotated model in 3D with all information included
  2. Design tables or configurations can achieve this very easily
  3. All major vendors offer viewers for 3D formats; the most basic of these are normally free.
  4. Viewers remove the need for printing; beside printed copies are uncontrolled and can lead to errors

It can easily be demonstrated that any technical objection can be overcome with correct tool deployment.

So, why do 2D drawings still exist?

The Culture

If you dig a bit further, other reasons start emerging from the shadows:

  1. We have always used drawings
  2. It would be difficult to retrain the shop floor
  3. Our suppliers don’t have the capability to use 3D models
  4. It would take years to redesign our processes

Finally, here are the true reasons why 2D drawings still exist and they are all cultural in nature. It is similar to the neighbor who trudges down the driveway in the snow and picks up a hard copy newspaper. Just sit up in bed and pick up a Smartphone!

So, how do you address the cultural issues?

The Change

Here is a high level journey from 2D to 3D

2D to 3D
  1. Technology – Choose the best technology
  2. Best Practices – Figure out how to take information in2D to 3D
  3. Impact – Evaluate impact to downstream processes
  4. Strategy – Design a strategy to replace 2D Drawings
  5. Planning – plan the transition and the OCM (more on that later)
  6. Implement – roll out the transition and goodbye to drawings

Here are some more critical elements of the journey

Best Practices – answer questions like Current information on Drawings? Critical vs Non-Critical? Common standard for GDT information? Company Standards?

Downstream Impact – In a complex organization, there are probably many users of 2D Drawings both within and without the organization. It is important to identify all these users before suddenly removing drawings!

Strategy – the various strategy components that must be considered include how to convert 2D information to 3D; technology purchase; repurpose downstream systems; training courses required; Project Plan; what to do with legacy data

Planning – As noted previously, the biggest obstacle to converting from 2D to 3D is cultural resistance. A well prepared organizational change methodology (OCM) and plan is vital. Considerations include communication, training, support and identifying champions.

Good luck!

Tata Technologies is a global engineering company that helps organizations engineer better products.
Visit www.tatatechnologies.com or contact info.americas@tatatechnologies.com

Product and Manufacturing Information (PMI) consists of non-geometric data, that is attached directly to a 3D CAD model to define geometric dimensioning and tolerancing (GD&T), engineering and manufacturing specifications, dimensions, and text.  PMI is part of Model Based Definition (MBD) and together these two elements are a part of a Digital Twin.

Applying PMI to a 3D model can reduce or eliminate the use of 2D drawings and can be used downstream to perform tolerance analytics and coordinate-measuring machine (CMM) inspection.

PMI is a command within NX that gives you the ability to create/attach dimensions and annotations to define the 3D model, and requires model views similar to the views on a drawing.  These dimensions and annotations are associative to the 3D geometry, and if it is decided that a 2D drawing is required, then the PMI can be inherited from the 3D model and automatically applied to the drawing views.

We think of MBD and PMI as new technologies and 2D drawings as “old school,” but there are valid uses for a 2D drawing.  Given the ability in NX to quickly create 2D drawings with associative dimensions inherited from the 3D PMI… this gives you the best of both worlds.

The image below demonstrates what PMI looks like in a 3D model view, and the next image down demonstrates the inherited PMI in a 2D drawing view:

Visit www.tatatechnologies.com or contact info.americas@tatatechnologies.com

NX Realize Shape is a powerful and intuitive subdivision design tool that makes use of primitive shapes to create concept design models.  In the image below you can see a sphere has been chosen, but there are a number of other shapes to select from such as cylinder or block to name a few.

These primitive shapes can be placed over top of background data like sketches or even art work similar to what you see in the image above.  When a primitive shape is created, a cage is automatically created that surrounds the shape.  The shape can be morphed into designs by transforming that cage.  By selecting on, and dragging the cage elements (lines or points), you can mold the shape to fit the background image.

 

As seen in the image above, you can split a face into smaller faces (subdivide) in order to create more cage elements. This gives you greater control of the cage anytime more detail is required in a given area of your design.

By selecting cage elements (lines or points) and dragging them up or down, left or right, the concept designer is able to morph a simple shape into a complex form in a relatively shorter period of time versus having to work with .

Why do we promote the use of Realize shape?

Simple, this model represents the birth of the digital twin.  This digital twin is then used for detailed design, documentation, validation, simulation, and all the way to traditional or additive manufacturing… all within a single unified environment like NX… means you are going to use trusted data from concept to manufacturing… without requiring conversion or translation, and this is going to shorten your innovation lifecycle, getting you from concept to market faster!

Visit www.tatatechnologies.com or contact info.americas@tatatechnologies.com

Do any of the questions below apply to your organization:

  • Do you own existing Dassault Systemes software products and are up to date with maintenance?
  • Do you need to transform your digital engineering processes?
  • Are you interested in implementing the true Digital Twin concept?
  • Is the technology that you are using for Digital Product Definition out of date?
  • Does your company have strategic initiatives like Lean Manufacturing, Flawless Launch, Model Based Engineering or similar?
  • Is your company expanding or looking to put new products on the market?

If the answer to any of these questions is Yes, then you should be looking at the Customer Transformation Program (CTP) from Dassault Systemes.

Dassault Systemes  launched a Customer Transformation Program for 2019 which is designed to transform the businesses of all their existing customers. This is a limited-time sales initiative program starting January 21, 2019 and ending December 31, 2019.

The program offers existing customers a voucher that makes them eligible for a discount on qualified new purchases of software from Dassault Systemes extensive range of productivity enhancing solutions. Customers can earn up to 35% off purchase of qualified new software – an exciting incentive to get up to date with the latest technology.

The future focus of Dassault Systèmes is on the innovative 3DEXPERIENCE platform, a disruptive technology that can completely transform your business. As a result, the largest discounts are for platform products, on premise or in the cloud.

As an example, a customer may have an existing Dassault Systemes CATIA V5 software and his installed base entitles them to a voucher good for 35% discount on a new product up to an amount 0f $35,000. Assume a new opportunity arises and the customer requires SIMULIA to run advanced simulations. If the list price of what is required is $100,000, then this can be purchased for $65,000 by applying the voucher.

As a trusted advisor, Tata Technologies can help navigate through the CTP program. Dassault Systemes has been investing billions into innovative technologies and helping organizations face business challenges. Please engage us to discover how your business can be transformed.

Visit www.tatatechnologies.com or contact info.americas@tatatechnologies.com

Digitalization is a digital process that ties all phases (ideation, realization and utilization) together through a digital thread that has the intelligence of the products and its lifecycle processes and connects to smart devices which can interpret and react to the information. This digitalized innovation environment is what will provide todays’ and the future manufacturers with sustainable competitive advantage.

Siemens PLM offers a suite of technology solutions to create Model Based Definition (MBD) and to consume it in the downstream processes to support Model Based Manufacturing (MBM). MBD is a complete digital definition of the product within the 3D model. One of the key element that contributes to MBD is PMI or “Product and Manufacturing Information”.  It Conveys information such as geometric dimensioning and tolerancing (GD&T), 3D annotation (text), surface finish , material specifications etc.  NX PMI has an advanced toolset for creating rich PMI content that enables product development companies to capture and associate this design & manufacturing requirements directly with the 3D model, and share this information with other development applications . This enables the manufacture and inspection of the product without need for traditional 2D drawings.

NX PMI Objectives include

  • Capture and communicate design and manufacturing intent
  • Streamline the PMI authoring process
  • Facilitate and maximize downstream reuse
  • Remove the effort and cost of manually producing drawings
  • Support MBD and MBM initiatives

The solution capability highlights include

Dimensioning 

  • Smart dimensioning commands infer method based on selection
  • Dimensions are created in model views based on a defined annotation plane
  • Simplify authoring of dimensions by defining Feature Dimensions and Sketch Dimensions as PMI with “Display as PMI”
  • NX supports the import and export of semantically rich PMI from JT

Annotation 

  • Various types of PMI annotations allow users to specify important manufacturing requirements in the forms of
    • Note, Datum Feature Symbol, Datum Target, Feature Control Frame, Surface Finish, Weld (including Weld Assistant) , Balloon, Custom Symbols

Specialized Notes 

  • A variety of specialized PMI notes that allow users to extract or display specific information
  • Targeted at specific/specialized uses like
    • Coordinate, General & Specific Notes, Enterprise Identification, Material Specification, Part Identification, Fabrication Labels, Process Specification, URL Note, User Defined , String, Number and Integer Notes

Supplemental Geometry 

  • Per 3D Annotation Standards
  • Support for PMI Centerlines and Center Marks. Interactive control over extensions
  • PMI Regions are used to indicate or designate areas of a model for special purposes
    • Limited application of a tolerance
    • Show the area affected by a datum target
    • Designate a standalone region not referenced by other PMI annotations

Sectioning, Mirroring & WAVE 

  • PMI (Lightweight) Section and Legacy PMI Section
    • Options for Single Plane, Parallel Planes and Box Type
    • Can be inherited onto a drawing
    • Crosshatch derived from material
    • Cutting Plane Symbol Support
  • Support for Mirror PMI and Model Views & Support for reposition, delete and hide the mirrored PMI objects
  • WAVE PMI Linker: Include Body and Topology

Search & Reports 

  • PMI Search locates PMI display instances based on specific criteria
    • Specify PMI Type , Define Range ,Designate Output Preference
  • PMI Report generates a spreadsheet detailing specific PMI content
  • Find PMI Associated To Geometry displays a summary of PMI associated with selected geometry

Security Markings 

  • Per 3D Annotation Standards
  • PMI Security Markings can be applied and appear in an Information window when the part file is opened
  • Markings provide an acknowledgement mechanism before the part is loaded
  • Customizable Messages for
    • Government Security Information
    • Company Proprietary Information
    • Export Control

GD&T Validation

  • Verification that PMI GD&T on a part is compliant with the GD&T standards (ISO and ASME)
  • Syntactic and Semantic checks
    • Validation for FCFs and Datum Feature symbols
  • Results are presented in HD3D for improved visual feedback

 

 

 

Many leading manufacturers pursue a global product development and manufacturing strategy. Although this allows manufacturers to achieve tremendous economy of scale and scope, this strategy has increased planning and collaboration complexities by order of magnitudes, especially in the following areas.

  • Planning global production
  • Optimizing and effectively leveraging capacity
  • Answering manufacturing feasibility questions with confidence
  • Mitigating scrap, rework and delays

When product design and manufacturing are dispersed on a global scale, how do they ensure that their teams can collaborate, perform analysis in a secured environment? Often there is a vacuum between product /process design and the actual manufacturing execution. These two teams don’t have the suitable tools to share and exchange information.

At the design stage engineers have to deal with design data, CAE models, embedded software designs, etc. At the execution stage ERP and MES systems are responsible for managing job orders, inventory, scheduling etc.  Manufacturing process management solutions allows manufacturers to  manage their enterprise product and production data on a global scale. They can integrate the product design and production execution processes in a single platform. Teamcenter Manufacturing Solutions provides an en d-to-end solution to collaboratively design, validate, optimize, and document manufacturing processes .  Key capabilities include:

  • Process design and planning

A single source of manufacturing knowledge can streamline collaborative processes and decision making across the product and manufacturing engineering departments. Teamcenter supports process design and planning by leveraging all of the product and process information for planning purposes, creating multiple plant views with process structure, scoping the process workflow and tracking BOM line items. This can reduce planning cycles and optimize production.

  • Change visibility

Teamcenter provides visibility to change. Late-stage changes can have the largest impact on a manufacturer’s bottom line as the cost of change raises exponentially throughout the product lifecycle. Teamcenter communicates change from engineering to production in controlled workflows that include bill of materials management. Teamcenter provides production updates and validates the impact to existing production processes.

  • Manufacturing work instructions

With Teamcenter, electronic work instructions are created and managed in one single source that spans the lifecycle, from Design to Manufacturing Planning to Process Instructions Planning to Execution. You can streamline workflow, and work instruction processes, including 3D visualization and simulation  to provide product context and demonstrate how to execute tasks

  • Interoperability and open architecture

Underpinning the entire manufacturing process is Teamcenter’s open PLM platform. Teamcenter brings together all engineering and manufacturing information, including bi-directional BOM-BOP integration. By using ISO-standard JT files, manufacturing workers have visibility to 3D product designs in a CAD-neutral visualization format.

In summary, the benefits of using Teamcenter for manufacturing process management are:

  • Concurrently develop product and process plans so you can make smarter decisions, earlier, and speed time to market.
  • Mitigate the risk of late-stage change, which has the largest single impact to profitability
  • Reuse proven global production capabilities to optimize quality and performance
  • Leverage Teamcenter PLM investment to streamline manufacturing planning and operations, as well as engineering

Does your organization struggle to produce CAD and digital definitions of product? Is the CAD development of product a bottleneck in your process? If the answer is yes, you could benefit from a Digital Engineering Benchmark.

The Digital Engineering Benchmark assessment captures the opinions of senior and knowledgeable personnel in your organization on the current state and future Digital Engineering requirements for your business. In addition, a priority for improvement and an assessment of current effectiveness is recorded. It centers on 17 key Digital Engineering “Pillars” ranging from 3D CAD Standards, through to CAD Extensions. The pillars are listed below:

  1. 3D CAD Standards
  2. Drawing Standards
  3. CAD Templates
  4. 3D Standard Features
  5. Standard Parts Library
  6. Materials Library
  7. Automated Drawing Generation
  8. 3D Master
  9. Automated Designs
  10. Automation Scripts
  11. Digital Mockup
  12. Spatial Analysis
  13. Special CAD Extensions
  14. Design for Manufacturing
  15. CAD Checking Tools
  16. Intellectual Property Protection
  17. Publications

After the 17 pillars have been covered, senior and knowledgeable personnel are also invited to “spend” an assumed benefit in value areas within your business. The areas identified are improving time to market, increasing the portfolio of the company and improving product quality.

Finally, the tool produces a comprehensive report showing the customer’s current state of maturity and a benchmark comparison with the industry.

Participants have found this process to be very useful as it allows them to prioritize their initiatives, gives a high level view of their roadmap to success and provides them with industry benchmark information

My previous post described the “Digital Twins” in general and the importance of PLM to support it. To begin with a Digital Twin need to provide the means to design, validate and optimize a part, product, manufacturing process or production facility in the virtual world using a set of computer models. It should enable companies to do these things quickly, accurately and as close as possible to the real thing – the physical counterpart. They also need to consume the data from sensors that are installed on physical objects to represent their near real-time status, working condition or position.

Digital Twins was in the making for many years , especially around advanced robotics. Siemens has recognized the value of the digital twin for a long time and enabled the development of full 3D models for automotive body assembly cells. These models were used to simulate, validate and optimize robotic operations before they were executed on the shop floor. With an extremely high degree of fidelity, these applications could not only simulate a cell, but also enable its near perfect virtual commissioning. Advances in computer science have made it possible to broaden the scope of the primitive digital twin to include many more capabilities, information, inputs and outputs. Today Siemens support digital twins for product design, manufacturing  process planning and production using the Smart  Factory loop and via smart products.

One of the most important value of a digital twin is that it enables flexibility in manufacturing and reduces the time needed for product design, manufacturing process and system planning, and production facility design; thus helping companies to develop and introduce new products to the market much faster than ever.  Connecting Engineering , manufacturing process design and actual production is the foundation and starting point for Digital Twins.

A digital twin also improves quality and even supports new business models that offer opportunities for small-to-midsize companies to expand and bring more high-tech capabilities into their shops. Digital twins will help companies become more flexible,  reduce time-to-market and costs, improve quality and increase productivity at all levels of the organization.  When implementing a true “Digital Twin” on the first day becomes a  big ask for companies,  they might want to adopt it in a phased manner, may be in a similar way it evolved – starting with automated manufacturing process design and production.  My next blog will outline the three pillars involved in deploying a digital twin .

Digital twins are the next new thing for product development in this digitalization era. They bring the physical and the digital worlds closer than ever and represent everything in the environment of a physical product, and not just the product itself and its production system.  Enabled by Product Lifecycle Management (PLM), and supported by advanced communications processes and workflows; often described as digital thread, Digital Twins represent the complete physical product throughout the entire lifecycle, end-to-end.

As products become ever more complex due to ever-increasing design complexity, regulatory requirements, higher software content, and the like, conventional simulations can constrain problem solving and decision-making. Digital Twins are much more than the typical CAE simulations with just design specifications,  materials properties, geometric models, components, and analyses such as anticipated behavior under load . It moves past the primary reliance of conventional simulations on geometry. Even the best of today’s simulations are largely limited to geometric data in CAD, CAE, and PDM solutions plus other elements contained in engineering repositories. Conventional simulations are limited to problems that are tightly circumscribed.   Digital twins have no such limitation: geometry and other engineering constraints are just starting points.  Digital Twins are virtual frameworks for managing product data that is orders of magnitude more varied than what conventional simulations handle and more importantly to turn it into actionable information -information that can be used for making decisions and for supporting those decisions as elements of business models.  This new framework uses latest digital technologies to simulate and accurately predict physical product behavior, which can change a business model and provide new revenue and value-producing opportunities; it is the process of moving to a digital business.

The growing importance of digital twins adds to PLM’s key role as the innovation platform. End-to-end digitalization of both products and processes is essential for any enterprise that intends to implement and take advantage of this new models . This means PLM itself must also continually adapt to support the design and delivery of innovative products and services and further enhance its abilities on collaboration, connectivity, and interoperability; which forms the foundations of any innovative platform .

© Tata Technologies 2009-2015. All rights reserved.