Category "Digital Factory"

Are you looking at investing in a MES (Manufacturing Execution System)? Do you need to improve the efficiency of your manufacturing operations with the latest technology? If you answered yes, then a MES benchmark may be exactly what is needed.

In order for you to realize the value from your current or future MES investments, you must first understand the maturity of your business and your current state. In addition, you must identify a pragmatic future state and plan a roadmap to achieve it. This may involve not only introducing new technologies and processes, but changes to your organization to support them.

Tata Technologies has developed a structured MES Analytics process with supporting tools and processes to help our customers understand the maturity of their MES, compare it to their peers and plan for the future.

The MES Benchmark assessment captures the opinions of senior and knowledgeable personnel in your organization on the current state and future MES requirements for your business, together with a priority for improvement and an assessment of current effectiveness. It centers on 17 key MES “Pillars” ranging from Scheduling Management, through to Shipping. These pillars are listed below:

  1. Enterprise Resource Planning (ERP) Integration
  2. Product Lifecycle Management (PLM) Integration
  3. SCADA, Control and Interfaces
  4. Inventory Management
  5. Planning, Scheduling and Execution
  6. Resource Management
  7. Progress Tracking
  8. Track / Traceability / Genealogy
  9. Error Proofing
  10. Quality Management
  11. Recipe Management
  12. Work Instructions
  13. Shipping Management
  14. Shop floor Information
  15. Data Collection and Performance Analysis
  16. Maintenance Planning and execution
  17. Predictive Analytics

After the 17 pillars have been covered, senior and knowledgeable personnel are also invited to “spend” an assumed benefit in value areas within your business. The areas identified are improving time to market, increasing the portfolio of the company and improving product quality.

Finally, the tool produces a comprehensive report showing the customers current state of maturity and a benchmark comparison with the industry.

Participants have found this process to be very useful as it allows them to prioritize their initiatives, gives a high-level view of their roadmap to success and provides them with industry benchmark information

My previous post described the “Digital Twins” in general and the importance of PLM to support it. To begin with a Digital Twin need to provide the means to design, validate and optimize a part, product, manufacturing process or production facility in the virtual world using a set of computer models. It should enable companies to do these things quickly, accurately and as close as possible to the real thing – the physical counterpart. They also need to consume the data from sensors that are installed on physical objects to represent their near real-time status, working condition or position.

Digital Twins was in the making for many years , especially around advanced robotics. Siemens has recognized the value of the digital twin for a long time and enabled the development of full 3D models for automotive body assembly cells. These models were used to simulate, validate and optimize robotic operations before they were executed on the shop floor. With an extremely high degree of fidelity, these applications could not only simulate a cell, but also enable its near perfect virtual commissioning. Advances in computer science have made it possible to broaden the scope of the primitive digital twin to include many more capabilities, information, inputs and outputs. Today Siemens support digital twins for product design, manufacturing  process planning and production using the Smart  Factory loop and via smart products.

One of the most important value of a digital twin is that it enables flexibility in manufacturing and reduces the time needed for product design, manufacturing process and system planning, and production facility design; thus helping companies to develop and introduce new products to the market much faster than ever.  Connecting Engineering , manufacturing process design and actual production is the foundation and starting point for Digital Twins.

A digital twin also improves quality and even supports new business models that offer opportunities for small-to-midsize companies to expand and bring more high-tech capabilities into their shops. Digital twins will help companies become more flexible,  reduce time-to-market and costs, improve quality and increase productivity at all levels of the organization.  When implementing a true “Digital Twin” on the first day becomes a  big ask for companies,  they might want to adopt it in a phased manner, may be in a similar way it evolved – starting with automated manufacturing process design and production.  My next blog will outline the three pillars involved in deploying a digital twin .

Digital twins are the next new thing for product development in this digitalization era. They bring the physical and the digital worlds closer than ever and represent everything in the environment of a physical product, and not just the product itself and its production system.  Enabled by Product Lifecycle Management (PLM), and supported by advanced communications processes and workflows; often described as digital thread, Digital Twins represent the complete physical product throughout the entire lifecycle, end-to-end.

As products become ever more complex due to ever-increasing design complexity, regulatory requirements, higher software content, and the like, conventional simulations can constrain problem solving and decision-making. Digital Twins are much more than the typical CAE simulations with just design specifications,  materials properties, geometric models, components, and analyses such as anticipated behavior under load . It moves past the primary reliance of conventional simulations on geometry. Even the best of today’s simulations are largely limited to geometric data in CAD, CAE, and PDM solutions plus other elements contained in engineering repositories. Conventional simulations are limited to problems that are tightly circumscribed.   Digital twins have no such limitation: geometry and other engineering constraints are just starting points.  Digital Twins are virtual frameworks for managing product data that is orders of magnitude more varied than what conventional simulations handle and more importantly to turn it into actionable information -information that can be used for making decisions and for supporting those decisions as elements of business models.  This new framework uses latest digital technologies to simulate and accurately predict physical product behavior, which can change a business model and provide new revenue and value-producing opportunities; it is the process of moving to a digital business.

The growing importance of digital twins adds to PLM’s key role as the innovation platform. End-to-end digitalization of both products and processes is essential for any enterprise that intends to implement and take advantage of this new models . This means PLM itself must also continually adapt to support the design and delivery of innovative products and services and further enhance its abilities on collaboration, connectivity, and interoperability; which forms the foundations of any innovative platform .

There is an excellent story in leadership consulting lore. I’m not sure how true it is, but the lessons derived from it are incredibly valuable.

There was once a detachment of Hungarian soldiers that struck out on a reconnaissance mission from their platoon in the Alps. While they were out, there was a massive snowstorm and the soldiers lost their way – returning was impossible.  The team was worried; they were not prepared for an extended stay out in these harsh conditions, and even if they had been, how would they get back with no knowledge of their location? They had all but given up hope when one soldier, while rummaging through his uniform, found a map. He showed it to the group and a new =found sense of hope came over them. They rallied together, found shelter, and waited out the storm.

After a couple of days, the blizzard finally let up. Wearily, the soldiers set about returning to their platoon. Using the map, they identified various features of the land, and made their way back. Their commander was elated to see them alive and well. When he asked the team how they did it, the soldier showed the commander the map that had not only guided them back, but had also given them the hope to persevere.  Confused, the commander asked this soldier, “How on earth did you find your way using a map of the Pyrenees?”

This story teaches us many things; here are two:

  • Fear and anxiety can lead people to inaction, even to their own detriment (and the effect usually intensifies in groups)
  • Even with the wrong strategy or plan, the chances of success are higher than if there were no plan at all

The second point has many application in the business world.  One I think of most, in terms of our manufacturing customers, is that of their shop floors.  Often manufacturers, especially small and medium sized ones, don’t have a chance to get deep into process planning.  Stations are haphazardly placed, too many or not enough activities are scheduled at stations, new machinery is placed wherever it fits, etc.  All of this causes bottlenecks and a slower time getting things out the door.  As we all know, time is money – especially in manufacturing, where every lost minute, hour, or day translates into lost revenue.

Tata Technologies has an amazing team of technical experts and works with many solution providers that can help manufacturers find their own map. One of the maturity benchmarks we offer is for the “Digital Factory;” contact us to schedule yours.

 

This post was originally written in January of 2017.

With all the buzz about Additive Manufacturing, or 3D Printing, in the manufacturing world today, there is a lot of mystery and confusion surrounding common practices and techniques. This week’s blog post will address a common type of 3D printing known as Electron Beam Freeform Fabrication (EBF³) .

What is Electron Beam Freeform Fabrication?

It is actually part of a broader category, commonly referred to as a Filament Extrusion Techniques. Filament extrusion techniques all utilize a thin filament or wire of material. The material, typically a thermoplastic polymer, is forced through a heating element, and is extruded out in a 2D cross-section on a platform. The platform is lowered and the process is repeated until a part is completed. In most commercial machines, and higher-end consumer grade machines, the build area is typically kept at an elevated temperature to prevent part defects. The most common, and the first, technology of this type to be developed is Fused Deposition Modeling.

The Fused Deposition Modeling Technique was developed by S. Scott Crump, co-founder of Stratasys, Ltd. in the late 1980s. The technology was then patented in 1989. The patent for FDM expired in the early 2000s. This helped to give rise to the Maker movement by allowing other companies to commercialize the technology.

Electron Beam Freeform Fabrication, or EBF³ is one of the newest forms of rapid prototyping. This technique is performed with a focused electron beam and a metal wire or filament. The wire is fed through the electron beam to create a molten pool of metal. The material solidifies instantaneously once the electron beam passes through, and is able to support itself (meaning support structures generally aren’t required). This entire process must be executed under a high vacuum.

Pioneered by NASA Langley Research Center, this process is capable of producing incredibly accurate parts at full density (other additive manufacturing techniques have trouble achieving, or require secondary operations to achieve similar results). This is also one of the only techniques that can be successfully performed in zero gravity environments.

What Are the Advantages of this Process? […]

This post was originally created in January 2017.

With all the buzz about Additive Manufacturing, or 3D Printing, in the manufacturing world today, there is a lot of mystery and confusion surrounding the common practices and techniques. So, this week’s blog post will address a common type of 3D printing known as Electron Beam Melting (EBM).

What is Electron Beam Melting?

It is actually part of a broader category, commonly referred to as a Granular Based Technique. All granular based additive manufacturing techniques start with a bed of powdered material. A laser beam or bonding agent joins the material in a cross section of the part. Then the platform beneath the bed of material is lowered, and a fresh layer of material is brushed over the top of the cross section. The process is then repeated until a complete part is produced. The first commercialized technique of this category is known as Selective Laser Sintering.

The Selective Laser Sintering Technique was developed in the mid-1980s by Dr. Carl Deckard and Dr. Joseph Beaman and the University of Texas at Austin, under DARPA sponsorship. As a result of this, Deckard and Beaman established the DTM Corporation with the explicit purpose of manufacturing SLS machines, and in 2001 DTM was purchased by their largest competitor, 3D systems.

Electron Beam Melting is very similar to Selective Laser Melting, though there are a few distinct differences. EBM uses an electron beam to create a molten pool of material, to create cross-sections of a part. The material solidifies instantaneously once the electron beam passes through it. In addition, this technique must be performed in a vacuum. This is one of the few additive manufacturing techniques that can create full density parts.

What Are the Advantages of this Process?

EBM is quick; it’s one of the fastest rapid prototyping techniques (though, relatively speaking, most techniques are fast). In addition, it can potentially be one of the most accurate rapid prototyping processes, the major limiting factor being the particle size of the powdered material.

As mentioned previously, this is one of the only additive manufacturing techniques that yields full-density parts; this means parts created with EBM will have similar properties to parts created using traditional manufacturing processes.

Another advantage of the material bed is the ability to stack multiple parts into the build envelope. This can greatly increase the throughput of an EBM machine.

What Are the Disadvantages of this Process? […]

This post was originally created in January 2017.

With all the buzz about Additive Manufacturing, or 3D Printing, in the manufacturing world today, there is a lot of mystery and confusion surrounding the common practices and techniques. So, this week’s blog post will address a common type of 3D printing known as Selective Laser Melting (SLM).

What is Selective Laser Melting?

It is actually part of a broader category, commonly referred to as a Granular Based Technique. All granular based additive manufacturing techniques start with a bed of a powdered material. A laser beam or bonding agent joins the material in a cross-section of the part. Then the platform beneath the bed of material is lowered, and a fresh layer of material is brushed over the top of the cross-section. The process is then repeated until a complete part is produced. The first commercialized technique of this category is known as Selective Laser Sintering.

The Selective Laser Sintering Technique was developed in the mid-1980s by Dr. Carl Deckard and Dr. Joseph Beaman and the University of Texas at Austin, under DARPA sponsorship. As a result of this, Deckard and Beaman established the DTM Corporation with the explicit purpose of manufacturing SLS machines; in 2001, DTM was purchased by their largest competitor, 3D Systems.

SLM is a similar process to SLS, though there are some important differences. Instead of the substrate being sintered, it is melted to fuse layers together. This is typically done in a chamber with an inert gas (usually Nitrogen or Argon), with incredibly low levels of oxygen (below 500 parts per million). This is to prevent any unwanted chemical reactions when the material changes its physical state. This technique yields higher density parts than any sintering process.

What Are the Advantages of this Process?

SLM is quick; it is one of the fastest rapid prototyping techniques (hough, relatively speaking, most techniques are fast). In addition, it can potentially be one of the most accurate rapid prototyping processes, the major limiting factor being the particle size of the powdered material.

As mentioned previously, this technique yields higher density parts than other additive manufacturing techniques, making for a much stronger part.

Another advantage of the material bed is the ability to stack multiple parts into the build envelope. This can greatly increase the throughput of a DMLS machine.

What Are the Disadvantages of this Process? […]

This post was originally created in January 2017.

With all the buzz about Additive Manufacturing, or 3D Printing, in the manufacturing world today, there is a lot of mystery and confusion surrounding the common practices and techniques. So, this week’s blog post will address a common type of 3D printing known as Direct Metal Laser Sintering (DMLS).

What is Direct Metal Laser Sintering?

DMLS is actually part of a broader category, commonly referred to as a Granular Based Technique. All granular-based additive manufacturing techniques start with a bed of a powdered material. A laser beam or bonding agent joins the material in a cross-section of the part. Then the platform beneath the bed of material is lowered, and a fresh layer of material is brushed over the top of the cross section. The process is then repeated until a complete part is produced. The first commercialized technique of this category is known as Selective Laser Sintering.

The Selective Laser Sintering technique was developed in the mid-1980s by Dr. Carl Deckard and Dr. Joseph Beaman and the University of Texas at Austin, under DARPA sponsorship. As a result of this, Deckard and Beaman established the DTM Corporation with the explicit purpose of manufacturing SLS machines.  In 2001, DTM was purchased by its largest competitor, 3D Systems.

DMLS is the same process as SLS, though there is an industry distinction between the two, so it is important to make note of this. DMLS is performed using a single metal, whereas SLS can be performed with a wide variety of materials, including metal mixtures (where metal is mixed with substances like polymers and ceramics).

What Are the Advantages of this Process?

[…]

This post was originally written in January of 2017.

With all the buzz about Additive Manufacturing, or 3D Printing, in the manufacturing world today, there is a lot of mystery and confusion surrounding common practices and techniques. This week’s blog post will address a common type of 3D printing known as Laminated Object Manufacturing (LOM).

Laminated Object Manufacturing or LOM works by joining layers of material (usually paper or plastic sheet) with an adhesive while a knife or laser cuts cross-sections to build a complete part. Parts are typically coated with a lacquer or sealer after production.

What Are the Advantages of this Process? […]

It always amazes me, the sheer complexity of the task.  We must take a detailed engineering design, start with a simple block of metal, and through the application of pressure and process, whittle that block down to a functional product, accurate to within microns.

cam_isv_3

In order to accomplish this feat more efficiently and bring the cost/part down, CNC Machine Tools have added more of everything in recent years. They have become more powerful, allowing for higher cutting speeds that require advanced feed-rate controls to make effective.  They have also become more dynamic, with 5-Axis Mills and multi-spindle, multi-turret Mill-turn machines offering opportunities to minimize part setups, increase accuracy, and reduce overall machining time.

They have, in short, become more complex.  And with that complexity comes additional expense.  With machines that routinely cost multiple hundreds of thousands, if not millions of dollars, the reality of the situation is that a machine collision is just not an option.

There are so many capabilities and options available on a modern NC Machine tool that ensuring that the machine is properly programmed to do what is expected becomes a monumental task.  You need a powerful programming tool to help you create the paths, controlling the cutting tool axis, speeds, engagements and retracts so as to efficiently and accurately machine the product.

Those paths, when initially reviewed by the CAM software, may look feasible from the context of the tool, but upon generating the code and loading it into the controller, often there are motions that are either positional in nature (rotating the part to align the tool), or controller specific (ex. Go home moves) that create collisions with objects such as fixtures or the part, or that require movement beyond the machine’s axis limitations. […]

© Tata Technologies 2009-2015. All rights reserved.