Category "Siemens PLM"

Computer aided engineering has always been a role of a specialist. This statement is very much evident from the fact that more than 50 percent of analysts today have a graduate degree; either an MS or a PhD. This is because these physics-based simulations are a lot more than collection of icons, toolbars and pull-down menus. Unless the user is well familiar with the core engineering aspect of the problem being solved as well as with the underlying governing equations that solve the problem, he is very likely to make an error in modeling that would lead to erroneous results. In such situations “a stress solver becomes a stress creator.”

If one dissects the subject of computer aided engineering, he would see several branches of it. The main ones are: finite element analysis, computational fluid dynamics, multi-physical simulation as well as multi body dynamics. Each of these branches have several sub-branches of it. For example, finite element analysis can be divided into structural analysis, thermal analysis, coupled analysis. The structural analysis can be further sub-divided into linear static structural, non linear static structural, linear dynamic, non linear dynamic etc. As one moves keeps digging inside, simulation becomes more niche and more specialized. This justifies the need of a specialist with many years of experience with advanced technical and academic credentials.

While we, at TATA Technologies do not provide work experience or academic credentials, we do transfer expertise in computer aided engineering and many other fields of engineering through dedicated technical trainings as well as on the job trainings. We offer software products specific trainings such as Dassault Systemes portfolio, Siemens PLM portfolio, Autodesk portfolio as well as several industry vertical trainings such as modeling of welds and connectors in automotive chassis, design for light weight etc. We do provide small sessions on best practices as well such as effective element selection in Abaqus, overcome convergence problems in non linear simulation etc.

We train people with various levels of experience and knowledge. The student may be a fresh designer out of college who has recently joined his first organization or may be a subject matter expert with years of design or simulation experience and trying to learn something new. As mentioned, we teach both software as well as methodologies and workflows.

If you have a high end engineering software in your organization that seems to be underutilized because of lack of human resource, please get in touch with us.

Visit www.tatatechnologies.com to learn more about our PLM offerings and how we can help customers use the best technology for their needs.

In today’s digital world it is more competitive every day. To get ahead of the curve, companies are looking for a means to expand their engineering capabilities such as electromechanical, human engineering, industrial design and styling, tooling and fixture design, or factory design. Many companies have a dedicated pool of NX licenses and are simply looking to add a couple of add-on modules for a few specific jobs but hesitate to buy them due to cost. Wouldn’t it be nice to have a pool of add-on licenses from which to pick and choose for those one-off jobs?  Now you can — through Siemens’ NX Product Engineering Token Licenses, also known as Value-Based Licensing.

Whether you manage or own a small, medium, or large company…token licensing can add flexibility and value to your product design capabilities and save you money. You can have access to a broader NX product portfolio without making a large investment.

What is NX Token-Based Licensing?

Token licensing provides a flexible and cost-effective method for you to run almost any NX Product Engineering add-on module including multiple translators. The token pool does not include products with royalty or programming authoring tools (NX Open Authoring). However, with more than 50 products in the pool from which to choose, you will have the flexibility to perform the engineering and design work necessary for your needs without having to make a separate purchase. Look at the wheel graph below to see a sample of the many available modules.

Token licensing is like “per-seat” floating licenses as both require you to check out a needed license, then check it in when you are done using it — making it available for access by a different user. The two options differ in that access to products in the per-seat floating license scenario is comprised solely of the products the company has purchased whereby token licensing allows access to every product in the token license pool. You have a greater set of products that can be easily accessed when you need them. No more infrequently used software sitting on a shelf.

How does NX Token-Based Licensing Work?

For starters, tokens are added to a base application such as: Mach 1 floating and above, or an NX Automotive Bundle, or a Daimler Supplier Bundle. Each NX application in the token pool consumes a defined number of tokens when in use. The total number of applications and which specific applications can be checked out (on top of the Base Application) is limited by the number of tokens the user has available.

Here is an example of how tokens work. Let’s consider a configuration of five Mach 1 floating seats (NX11001) and a 100 token value pack.

At 9 AM the token pool is full and ready for use.

At 9:30 a User 1 starts using NX Human Modeling… the Human Modeling app uses 26 tokens leaving a remainder of 76 tokens available for use.

Now at 9:45 AM, User 2 starts using NX Realize Shape. This app uses 35 tokens leaving a balance of 39 tokens available for use.

At 10:15 AM, User 1 finishes with Human Modeling and the tokens are returned to the pool leaving a balance of 65 tokens available, and ready for use.

Finally, at 10:30 AM, User 4 starts Routing Base, and… well you get the picture…!!!

We can help you size the pool and get the best configuration to suit your needs. You will need to consider the number of users accessing the pool and the “daily use” NX products versus “occasional use” NX products. Tokens are best used for “occasional use” products, so if you have a product that you rely on daily, it may be better as a floating add-on. Token pools are most cost-effective when there is a wide variety of NX applications needed.  In general, if four or more add-ons are needed then token-based licensing is an attractive option. You can mix tokens and floating add-on licenses to give you the most flexibility at a good price.  For example, if you have someone who uses a particular floating add-on license every day and another person who uses it on occasion, it might be best to purchase one floating add-on for the every day user and a value pack of tokens for the occasional user.

NX token based licensing offers numerous advantages:

    Access to multiple products
    • More than 50 apps currently in the pool and growing
    • As new modules are added to the pool, you will be able to use them without additional effort from your internal purchasing team.
Extreme flexibility
  • Run the add-on module you need, when you need it
  • Run occasionally needed products without having to make a separate purchase
Useful for a variety of users
  • Electromechanical, Industrial Designers and Styling, Mechanical Designers, Tooling and Fixture Designers, Translators, etc.
Cost effective
  • Access to individual add-on licenses for all the products in the NX Product Engineering token pool would be cost prohibitive.

If your business can benefit from a broader NX portfolio without having to make a large investment — Token-Based Licensing is for you.

For more information contact Tata Technologies at
info.americas@tatatechnologies.com

Visit our website at www.tatatechnologies.com

Tata Technologies is a Siemens Platinum Smart Expert Partner indicating our validated expertise in NX-CAD.

It has been the experience of many CAD experts, to sit and operate a CAD system like NX, while a person with little or no CAD experience sits beside them and tries to navigate the system vicariously through the expert in order to view and interrogate assemblies, parts, and drawings. I liken this approach to someone sitting in the back seat of your car while they tell you how to navigate the streets to get them to where they need to go when they could just as easily operate the car themselves.

Ok, I get it, CAD software can be difficult to learn and operate, and so the mindset is that it’s easier to tag an expert to do the driving… but does it make sense to tie up two resources for the purpose of viewing CAD data? Wouldn’t it be more proficient, and cost effective, to utilize a user friendly viewer to review and interrogate your NX CAD data… one that can be accessed and used by all… even by those with little or no CAD experience? The obvious answer is yes, so for this reason, many companies have employed the use of a lightweight viewer that relies on tessellated data. Obviously, this is not the most proficient or cost-effective solution for viewing NX data since these viewers require data translation which means they use a separate file format, and the viewer is a separate application, both of which need to be managed and maintained by your companies IT department… all of which add time and money to your product development projects.

NX Viewer is a subset of NX with a simplified layout containing a reduced set of menu items and icons, making NX Viewer easy to learn and operate, and since it is so easy to learn, it can help free up resources that would normally be deployed as CAD “drivers.” Everyone in your company can benefit from using NX Viewer, but the ones that can benefit the most are your casual users… your Engineering Managers, Shop Floor personal, Estimators, Engineers, and anyone who needs read access to native NX data but do not need write access to the data. You’ve heard the old adage, “Give a man a fish, and you feed him for a day. Teach a man to fish, and you feed him for a lifetime.” Teaching the casual user to “fish” for what they need to view, and “drive” on their own to where they need to go has never been easier.

NX Viewer is a cost effective, user friendly tool that enables users to open, view (rotate, pan, zoom, fit) and interrogate (accurately measure and cut sections) NX CAD models and drawings in the native NX format, and because it is a view only tool (no write access) this ensures data integrity since the data cannot be overwritten.

Why use NX Viewer… why not just use NX? NX Viewer is far less expensive than a seat of NX and it’s a perfect way to read, browse, and interrogate NX assemblies, parts, and drawings by everyone, but especially by people with little or no CAD experience. Making design information accessible to all departments within your company, and not just engineering, can have a positive effect on productivity by improving communication and understanding between groups.

  • Features include:
  • Browse the assembly and model history trees
  • Rotate, pan, zoom, and fit the geometry
  • Hide and Unhide objects
  • Dynamic sectioning
  • Accurate measurement of model B-Rep geometry
    • NX Viewer is NX, so you are measuring real math data and not tessellated data.
  • Edit object display
    • Color
    • Translucency
    • Shaded or Wireframe
  • View drawing sheets
  • Key benefits:
    • Cost-effective and inexpensive alternative to purchasing a third party viewer or a full seat of NX.
    • Intuitive and easy to learn even by casual/inexperienced CAD users
    • Share information across your enterprise – collaboration is the key to productivity
    • Accurate measurements because NX Viewer is NX, so you are measuring B-Rep data and not tessellated data as with other viewers.

Today’s world of design, engineering, and manufacturing is all about collaboration, and NX Viewer is an effective tool for connecting all of these areas of your product development activities, getting your ideas to market faster than ever before!

For more information contact Tata Technologies at info.americas@tatatechnologies.com or visit our website at www.tatatechnologies.com

Tata Technologies is a Siemens Platinum Smart Expert Partner indicating our validated expertise in NX-CAD.

FEMAP! That can be defined as a dedicated standalone, windows based pre and post processor for different types of finite element analysis simulations. It has a long history since its inception in 1985. The product was earlier with Unigraphics Systems which was acquired by Siemens PLM Solutions few years back. Every branded FEA software product gets upgraded every year with new valuable features that look good as well as feel good. FEMAP is no exception. Here we are looking at new functionalities in FEMAP release 12.0.

PAD and WASHER enhancement: Pads and Washers are used to effectively partition the geometry to get high quality isoparametric meshes around stress raisers such as holes. Till now this functionality was available only for circular geometries. Now the feature includes arbitrary geometries that may include tangential discontinuity

COPY/ROTATE/REFLECT: This functionality allows users to copy/rotate/reflect geometries along with associated meshes, loads and boundary conditions. The command can be executed successively to create different types of patterns with respect to translation and rotation.

Mesh Point Editor: Hard points are points defined by fixed coordinates on a curve or a surface that constrain the mesher by creating nodes at these specified locations. Hard points are desired at assembly level meshing to ease connection between different parts through node to node connectivity instead of using contacts. Hard points are further useful in connecting solid or surface mesh with a beam mesh which is a common application in civil structures such as concrete reinforcements. FEMAP 12 has a hard point editor through which hard points data can be imported into Femap via an external file or a clipboard. View/options can be used to control the display of hard points.

COHESIVE elements: These elements are used in modeling phenomenon such as delamination and material damage. Common real-life examples are peeling of a tape or evolution of a crack. NASTRAN solution sequences 401 and 402 have cohesive elements capability so it’s worth to include cohesive meshing capability in FEMAP.

Mesh->editing->cohesive meshing command has been added that work similar to mesh->editing->edge split command with a difference that cohesive command adds layers of cohesive element at the split with user defined element thickness and adjusts the size of original elements to achieve mesh compatibility.

BEAM Centerline Finder: This feature was earlier available as an API but now it has been included in the GUI of FEMAP 12.0. For arbitrary shapes, sometimes it is not possible to define all the section properties of beams. This feature extracts the beam properties using cross section of underlying solid geometry. User has two options. First option is to interactively pick curves and cross section of underlying solid. Second option is to pick only solid and FEMAP uses longest edge of the solid as curves for associated beams.


For more information contact Tata Technologies at
info.americas@tatatechnologies.com or visit our website at www.tatatechnologies.com

Tata Technologies is a Siemens Platinum Smart Expert Partner

What are Formboards, and what do they do?

To describe what a formboard is, and what it does, we need to start with what a wiring harness is, and what it does. The dictionary describes a wiring harness as a system of insulated conducting wires bound together with insulating materials, used in the electrical system of a machine, such as a motor vehicle or washing machine. Wiring harnesses can be found in just about every product that requires electrification. Trains, planes, farm equipment, machinery, RV’s, ships and boats, automobiles, motorcycles, computers, and home appliances… if it has electronics, chances are it has one or more wiring harnesses.

Wiring harnesses are usually produced manually on a flat surface, using a full scale drawing as a guide or a roadmap of sorts. These tables are typically referred to as formboards or harness boards. A formboard drawing is a flat representation of the 3D wiring harness. The main requirement on the formboard is that a manufactured wiring harness can physically fit in the product as intended. Not meeting this requirement can result in a wiring harness that doesn’t fit right, or cannot be installed in the product without using force to make it fit… thereby putting undue strain on the wires and connectors.

Image result for wiring harness formboard"
In the image above, note the full size wire harness drawing superimposed on a platform.
Photo credit: assemblymag.com

Creating formboard drawings in CAD can be a repetitive and time consuming task. Flattening out the wiring harness to make a 2D representation of the 3D harness can take hours or days depending on the complexity of the harness. This task can be made much simpler and less time consuming through the use of a Siemens product called, “NX Routing Harness.”

Go from 3D…
…to flattened…
…to a drawing, in the time it would take you to say, “Show me the money!”
Can your current software solution do that?

Here is a description from the Siemens playbook… “NX Routing Harness provides all the tools needed to route an electrical wiring harness consisting of bundles of wires in a product assembly. Capabilities also include the ability to specify typical mechanical parts and supporting equipment such as connectors and other devices. The software can also import the wiring characteristics for connections between electrical devices. This “connection list” may be created from a 2-D logical design application such as NX Schematics or other external ECAD systems. NX Routing Harness can automatically traverse paths which have been routed between the devices and assign the wire descriptions to the path segments as specified in the connection list. The wire descriptions are used to compute bundle diameters and to create solid bundle models. Actual wire lengths and diameters may be automatically added to the connection list for feedback to upstream ECAD applications or downstream to manufacturing applications. NX Routing Harness also identifies minimum bend radius violations and produces design and manufacturing documentation such as formboard drawings.”

NX Routing Harness does more than flatten a harness… it generates a full assembly, with all electrical connectivity information intact. The result is identical to the 3D assembly, but is laid out on a single plane while maintaining the relative position of each connector to the bundle as the harness is flattened. NX Routing Harness generates a 2D formboard drawing, while taking the unique approach of creating a Digital Twin of Manufacturing.

Some of the key benefits for using NX Routing Harness:

  1. User friendly application that gives quick results for 3D routing and 2D formboard creation.
  2. Reduce cost by making use of your digital twin to eliminate physical prototypes and rework… your harnesses will fit the first time.
  3. Reduce cost by re-using logical design which eliminates redundant data creation and improves quality by enforcing design standards
  4. Predicts accurate wire lengths and accurate bundle diameters for interference checking and space allocation for early analysis.

Are you responsible for designing wiring harnesses and creating formboard drawings? Can you and your company benefit from a powerful design tool that simplifies wire routing, harnessing and formboard drawing creation? Are you interested in streamlining your wire routing process to save time and money? Then you and your company could benefit from an NX Routing Harness demo today!

For more information contact Tata Technologies at
info.americas@tatatechnologies.com or visit our website at www.tatatechnologies.com

Tata Technologies is a Siemens Platinum Smart Expert Partner indicating our validated expertise in NX-CAD.

Many years ago, or so it seems, one of the methods for checking clearance and interference’s was performed through the use of drawings. By cutting sections through the parts in an assembly drawing, the detail of that assembly could be shown in a section view, and then distances could be measured between parts to determine whether clearance objectives where being met. This task involved tools such as a compass, a drafting pencil, and a scale along with the ability to draft accurately. Another method was to build a full size scale mockup, or buck, of the part or assembly to visually check for interference’s and you could also use a wide variety of tools to take measurements.

While there may be nostalgia for these methods, modern CAD tools and technology can accomplish the same tasks in far less time. By assembling parts and cutting sections through the CAD data, we can then electronically measure for clearance between parts and assemblies. This process is much faster than with drawings, and can greatly improve productivity. However, what if you had to find clearance issues within a very large data set like an engine, or transmission, or an instrument panel? This amount of data loaded into a CAD session can be difficult to work with due to the model size and complexity of the parts within these assemblies. Also, the tasks of cutting sections and taking measurements required for the clearance analysis is a skill only possessed by the proficient few.

Because of this and other problems, solutions were created that transform CAD data into lightweight tessellated data files. By translating the data into a JT (Jupiter Tessellation), or similar file, the viewer can read very large assemblies quickly and perform a multitude of tasks on that data.

One such viewer is Siemens Teamcenter Visualization Mockup, better known as VisMock. This tool is more than just a viewer, it’s a real-time digital mockup tool that you can use to detect and solve design issues early in your product lifecycle, getting you from art to part faster and cheaper than ever before! And, VisMock is a very intuitive and easy software to learn and use. With VisMock, the learning curve is minimal in comparison to learning a CAD system, so this lends itself well to those non-expert users who are looking for quick answers to design issues. For example, a non-CAD user can go into VisMock and perform a Clearance Analysis, and in a matter of minutes have the answer to a nagging question on whether there is a clash or clearance in their assembly, or to adjacent parts and assemblies.

VisMock is used in Automotive, Aeronautic and Aerospace, Ship Building, and Consumer Product industries as a design verification tool that can reduce or eliminate the use of rapid or traditional prototypes. This can further reduce the cost of bringing a product to market.

Teamcenter Visualization is available in four different levels: Base, Standard, Professional, and Mockup. Each level builds upon the one before it. Siemens offers Teamcenter Visualization this way so that it is scalable, so as your company grows, so can your visualization software.

Some of the key benefits for using Teamcenter Visualization Mockup:

  1. User friendly application that gives quick results for aiding in critical decisions across all disciplines within your company as well as your entire enterprise.
  2. Reduce cost by reducing the need for traditional and rapid prototypes.
  3. Making use of your digital twin moves critical decisions earlier in the product lifecycle where making changes to CAD data is easier and cheaper than correcting mistakes to a physical product.
  4. Four different levels to fit your current needs and for scalability.

So, can your business benefit from faster decision making by a wider range of participants? Teamcenter Visualization can facilitate this requirement and bring substantial benefits.

For more information contact Tata Technologies at
info.americas@tatatechnologies.com or visit our website at www.tatatechnologies.com

Tata Technologies is a Siemens Platinum Smart Expert Partner indicating our validated expertise in NX-CAD.

There have been quite a few market whispers about MSC Software and its products since the company’s acquisition by Symphony Technologies few years back. It’s flagship pre-processing tool called MSC Patran has been under spotlight since the introduction of new equivalent tool by MSC Software (now Symphony) called MSC Apex.  MSC Software adopted a similar strategy during 2008-09 by introducing a bunch of multi-disciplinary pre-processing tools such as MD Patran and later SimExpert. All these products had a very long gestation period with little luck in making a long term market presence.

Many veteran FEA analysts, particularly in aerospace domain are well familiar with the pains of using MSC Patran in geometry cleaning, meshing and composite modeling environments. The objective of this blog is to take a deep dive into these issues and demonstrate how an alternative product called Femap from Siemens can alleviate many of these unaddressed issues.

Femap has been a part of FEA community since more than 30 years and it was developed with the mission of having a dedicated PC based pre and post processor for engineering FEA. It is solver neutral as well as CAD independent solution that offers high performance modeling and analysis capabilities to solve toughest engineering problems.

  • Mid surface extraction

Almost all FEA pre-processors have this embedded tool but as the geometry becomes more and more complex, many of them fail to extract mid surfaces correctly. The automatic feature of Femap makes this job not only easy with minimum number of clicks but offers higher fidelity as well. User does not need to select opposite faces multiple times in case thickness changes in space. Just enter the maximum thickness value a part has and Femap does the rest for you. Its further possible to combine the mid surfaces so they appear as a single entity in the history tree.

 

  • Tools in the meshing toolbox

Before creating a mesh, the meshing toolbox offers multiple value added features to clean and modify the underlying geometry for a better mesh.

  • Project curve:

This features splits the extracted surface at the boundary of thickness transition so that the underlying elements are able to update the shell thickness property as the thickness changes on either side of the split.

  • Feature removal options

There are many features in CAD that may not be needed in FEA analysis and holes are the prominent ones. It is possible to close holes and similar geometries with just a click, if needed. By default, a point entity is created at the geometric center of the closed holes to make sure a kinematic constraint can be applied at those points, if needed.

  • Pad and washers

These features allow for mesh refinement in the vicinity of holes and depending on the geometry of holes, either a washer (circular) or a pad (square) option may be chosen. The feature creates iso-parametric meshes around the holes based on the distance of influence defined by the user. This is an “on the fly” feature that updates an existing mesh every time this feature is executed instead of creating a new mesh.

  • Dynamic node repositioning

This is a very handy feature to improve mesh quality on the fly. With the mesh quality contour option active, user can dynamically move any node of the mesh either on surface or on a curve until its quality improves which is instantly perceived by the user as element color changes from red to green. The effect of this tool is very local and only a few elements in the vicinity of selected node are considered at a time.

  • API’s for automating repetitive tasks

Most of Nastran based BDF’s include multiple RBE’s. Femap understands the pain of creating these RBE’s manually and applying boundary conditions to them. The custom tools provide an option to create RBE’s by selecting peripheral curves or nodes. The independent nodes are created automatically. Using API’s it is further possible to completely automate the RBE generation process.

The grouping options in custom tools provide an option to automatically define a group for independent nodes of all the RBE2’s in the model. This group can later be used to create constraints on RBE’s without picking each independent node individually.

 

So many welds, so little time… and that’s how long it takes to create them using NX Weld Assistant… very little time.

In addition to the weld types shown in the image above, you have the option to create custom weld types giving you the ability to model any type of weld possible.

One type of custom weld is an extension weld. This type of weld is started and stopped beyond the limits of the parts being welded as seen in the image below.

To create this weld, we will simply create a line weld in the usual way (see image below) and then use synchronous modeling + move face to grab and extend the face that makes up each end of the weld.

Key benefits to modeling welds in Cad include:

  • Provides a key piece of information necessary for a complete Digital Twin.
  • Mass properties inclusion (Weight and Volume).
  • Easy to visualize.
  • Easy to validate for correct location using Weld Advisor.
  • Easy to convey information via a Drawing or PMI
  • Available for inclusion into CAE analysis
  • Available for process planning
  • Available for robot programming
  • Significant time savings compared to manual application of welds
  • Having the ability to create and validate the welds in CAD ensures quality data is being sent to manufacturing thereby reducing the amount of rework.

Visit www.tatatechnologies.com or contact info.americas@tatatechnologies.com

There is so much more to this command than welding. Not only is there a full range of weld types, but you can also model beads of adhesives, glue, and mastic as well as fasteners like rivets for example. Basically there are three categories in Weld Assistant for joining parts, they are: discrete welds, line welds, and adhesives. Normally a rivet is a type of fastener, but they are included as a custom weld in Weld Assistant.

In this post, let’s take a look at how to model rivets. We will create a custom spot weld to mimic a rivet. We will start by configuring a custom weld spot under File + Utilities + Customer Defaults.

  • From the Customer Defaults window, select Weld Assistant + Point Locator and then select one of the Custom tabs.
  • Set the Solid Display to Cylinder and give the custom Point Locator a name… Rivet for example.
  • Set the other attributes accordingly, and then select OK to finish the configuration.

Now create a Rivet the same way you would create a Resistance Weld Spot.

  • From the Weld Assistance command select Weld Point Wizard.
  • From the Weld Point Wizard block:
    • Select your Method
    • Set the Type to the new custom Point Locator you just created (i.e. Rivet)
    • Select Next.
  • Select the Face Sets and then select Next
  • Select the points you want to create Rivets at and then select Next.
  • Select Finish to place the Rivets.

If the Rivets don’t show up at first, then select the Solid Weld Point Display option.

Key benefits to modeling welds in Cad include:

  • Provides a key piece of information necessary for a complete Digital Twin.
  • Mass properties inclusion (Weight and Volume).
  • Easy to visualize.
  • Easy to validate for correct location using Weld Advisor.
  • Easy to convey information via a Drawing or PMI
  • Available for inclusion into CAE analysis
  • Available for process planning
  • Available for robot programming
  • Significant time savings compared to manual application of welds
  • Having the ability to create and validate the Rivets in CAD ensures quality data is being sent to manufacturing thereby reducing the amount of rework.

Visit www.tatatechnologies.com or contact info.americas@tatatechnologies.com

Product and Manufacturing Information (PMI) consists of non-geometric data, that is attached directly to a 3D CAD model to define geometric dimensioning and tolerancing (GD&T), engineering and manufacturing specifications, dimensions, and text.  PMI is part of Model Based Definition (MBD) and together these two elements are a part of a Digital Twin.

Applying PMI to a 3D model can reduce or eliminate the use of 2D drawings and can be used downstream to perform tolerance analytics and coordinate-measuring machine (CMM) inspection.

PMI is a command within NX that gives you the ability to create/attach dimensions and annotations to define the 3D model, and requires model views similar to the views on a drawing.  These dimensions and annotations are associative to the 3D geometry, and if it is decided that a 2D drawing is required, then the PMI can be inherited from the 3D model and automatically applied to the drawing views.

We think of MBD and PMI as new technologies and 2D drawings as “old school,” but there are valid uses for a 2D drawing.  Given the ability in NX to quickly create 2D drawings with associative dimensions inherited from the 3D PMI… this gives you the best of both worlds.

The image below demonstrates what PMI looks like in a 3D model view, and the next image down demonstrates the inherited PMI in a 2D drawing view:

Visit www.tatatechnologies.com or contact info.americas@tatatechnologies.com

© Tata Technologies 2009-2015. All rights reserved.