Posts Tagged "CFD"

Many of our Abaqus customers don’t know that the Computational Fluid Dynamics approach (CFD) is not the only method of modeling fluids in Abaqus. There are many other possibilities and the right approach depends on the physics of the problem. This blog post discusses the multi physics methods of modeling fluids in Abaqus.

  • CFD method: This is the well-known and traditional method for fluids modeling. It’s based on Eulerian formulation, in which material flows through the mesh and can be accessed through the Abaqus/CFD solver. Application example: Flow through exhaust systems.
  • CEL method: This is a coupled Eulerian Lagrangian method primarily used in problems involving unbounded fluids where fluids free surface visualization is required. It’s also possible to simulate interaction between multiple materials, either fluids or solids. This method is accessible through Abaqus/explicit solver. Application example: Fluid motion in washing machine.
  • SPH method: This is a smooth particle hydrodynamics approach primarily used to model unbounded fluids that undergo severe deformation or disintegrate into individual particles. This method uses a Lagrangain approach in which material moves with the nodes or particles and can be accessed through the Abaqus/explicit solver. This method can be used for fluids as well as for solids. Application example: bird strike on an aero structure.

We can compare these three methods against multiple parameters such as materials, contact, computation speed, etc. to understand their applications and limitations:

  • Material considerations:

SPH method is most versatile in terms of material support. SPH supports fluids, isotropic solids as well as anisotropic solids.

CFD is the only technique that can model fluid turbulence

CFD is the only technique to model porous media

CFD and CEL allows material flow through the mesh: Eulerian

  • Contact considerations:

[…]

© Tata Technologies 2009-2015. All rights reserved.