Posts Tagged "Composites"

There is an interesting news regarding CATIA to be shared by composites user community. While almost all the composites related functionalities such as composites design by zones/plies, ply drop offs, core sampling, ply producibility, ply flattening, ply cut outs, lay-up export etc. have been existing as native CATIA offerings in composites workbenches, one valuable piece has been missing. That piece is called Laser Projection, a tool that can assist manufacturing guys in placing cut plies at right location on the tool. Earlier this functionality was offered through one of Dassault Systemes software partner called Majestic. However, Majestic got acquired by Autodesk a while ago so Dassault Systemes decided to develop a similar functionality in-house.

Laser Projection functionality was introduced in V5-6R 2016 release of CATIA, both in classic as well as in Express configurations and has been refined in service packs such as V5-6R 2016 SP2 and SP3. In classic configuration license is named as CLA and in express configuration license is named as LPX. Either CATIA composites design or manufacturing workbenches are a pre-requisite in either of these configurations. This technology is most suitable for most hand-layup parts such as panels, hulls, wind blades etc.

Within the application, it is possible to define any number of lasers by coordinates and assign properties to them such as its dimensions and range in terms of distance, horizontal and vertical angles. It is also possible to optimize the resource allocation. The reach envelope can be visualized to make sure largest ply in the model can be displayed with given number of lasers in the model. If not, more lasers can be defined or their positions can be changed.

The Laser Projection module is compatible with most commercial available vendor machines such as Virtek, LAP, LPT etc. The core thickness as well as plies thickness is automatically taken into account during projection. It is also possible to change display properties such as laser color, length of normal vectors etc. It is further possible to include additional geometry or text as a part of the display from predefined CATIA sets.

For any further information regarding licensing or functionality of this module, including a demonstration, please approach us and we are ready to help. It is also possible to import the laser projection files such as .py and .cal extensions to review the laser projections data in CATIA laser projection.

untitled

Composites always had a well-defined place in the aerospace industry because of their properties: lightweight to make overall design lighter and toughness to make overall design bear the aero structural loads. At present, from aircraft fairing to train noses, boat hulls and wind turbines, composites offer dramatic opportunities to meet increasing cost-driven market requirements and environmental concerns. However, modeling of composites in a seamless collaborative environment has always been a challenge. This is because of multiple aspects of composites modeling such as design, simulation, and manufacturing that made it quite a tough task on a single platform.

CATIA composites workbench now offers a solution to address various aspects of composites modeling in a unified manner. The objective of this blog post is to provide information on composites workbench capabilities with respect to design, simulation, and manufacturability of composites.

DESIGN IN ANALYSIS CONTEXT

There are different ways to start the preliminary design of a composite part, but the zone-based design is ideal to capture analysis constraints and predict the behavior of the part inside the design environment by importing thickness laws. The thickness laws are calculated as a result of FEA analysis. The composites part design workbench in CATIA provides easy-to-use dedicated zone creation and modification features. Zone-based modeling contributes to significant time savings with the ability to perform concurrent engineering with mating parts. The image below shows a wing panel with a grid created from ribs and spars in assembly context and thickness law for each cell mapped on the grid from a spreadsheet.

untitled

Once the grid information is ready, Composites workbench provides highly productive automatic ply generation from zone capabilities with automatic management of the ply staggering and stacking rules. The ability to quickly and automatically transition from zones to plies while keeping full associativity, allows the designer to focus on the design intent and helps dramatically reduce the number of geometrical tasks required to design the part.

untitled

To further check the viability of a design from the structural strength perspective, it is possible to perform the FEA simulation within the CATIA environment using the Elifini solver of CATIA analysis. The full associativity with composites workbench is maintained and true fiber angles are taken into account. To address the non-linear aspect of FEA, is it possible to export the plies data in the form of layup files to Abaqus CAE using the composites fiber modeler plug-in. In case design modifications are needed, it is possible to edit and modify any ply or sequence in the composites workbench and instantly export the modified layup file to simulation workbench or Abaqus CAE for validation. Thus designers and analysts can work together in collaboration during the composites development process, saving time, improving product quality, and preventing costly error. […]

© Tata Technologies 2009-2015. All rights reserved.