Posts Tagged "simulation vs. physical testing"

Organizations invest huge sums of money in simulation software to avoid expensive and disruptive physical testing processes. But how long it really takes to make this transformation happen! One thing is sure; it does not happen in a day. The flow chart below explains the reason pictorially. The last two blocks “compare and improve model” and “compare and improve theory” make this transformation a longer process than expected.

 

Let’s explore the reasons behind it. Comparison is needed to make sure that simulation results mimic the physical testing results before latter can be discarded, partially or fully. The difference in results can be due to three main factors: lack of user competency, limitation of software used, lack of sufficient input data.

Lack of user competency: FEA analysts are not born in a day. The subject is complex to learn and so are the software associated with it. The ramp up time really depends on analyst background along with complexity of problem being simulated. Organizations usually make a choice between hiring expert and expensive analysts who can deliver the results right away or producing analysts of its own through class room and hands on trainings. First option saves time while the second saves money. CAE software development companies are also making big stories these days by introducing CAD embedded simulation tools that require nominal user competency. Nevertheless, the competency builds up over time.

Limitation of software used: Initial investment in simulation domain is usually small. It means two things: either number of users are less or software functionality is limited. With time, complexity of problems goes up but the software remains the same. A common example I have seen is of a customer starting with simple linear simulation workbench in CATIA and over period trying to simulate finite sliding contact problems with frictional interfaces in the same workbench. Users don’t realize that their problem complexity has exceeded the software capacity to handle and it’s time to upgrade. It’s always recommended that analysts get in touch with their software vendors whenever they anticipate an increase in simulation software capacity or functionality. A certified simulation software vendor is a trusted advisor who can really help.

Lack of sufficient input data: “Garbage in – Garbage out” is a very common phrase in simulation world. However, at times it is very difficult to get the right input for software in use. The complexity of input data can arise either from complex material behavior or from complex loading conditions. Example of complex material may be hyper-elasticity or visco-elasticity observed in elastomeric materials. Examples of complex loading may be real time multi block road load data to estimate fatigue life. Sometimes simple metallic structures exhibit complex behavior due to complex loading. Examples are high speed impact or creep loading. With time many material testing labs have come into existence that can perform in house testing to provide right input data for simulation.

Conclusion: You will come out of the vicious loop of physical and simulation results comparison after couple of iterations if you have three things in place: right people, right software product and right input data. If you need help in any of the three aspects, we are always available.

© Tata Technologies 2009-2015. All rights reserved.